
Disclosure Statement

Dr. Margaret Stanley has acted as a consultant and advisor for Merck Sharp & Dohme, GlaxoSmithKline, and Sanofi Pasteur Merck Sharp & Dohme, Innovio, Vaccitech. HPV Vaccination: Prospect of moving to a one and only dose schedule

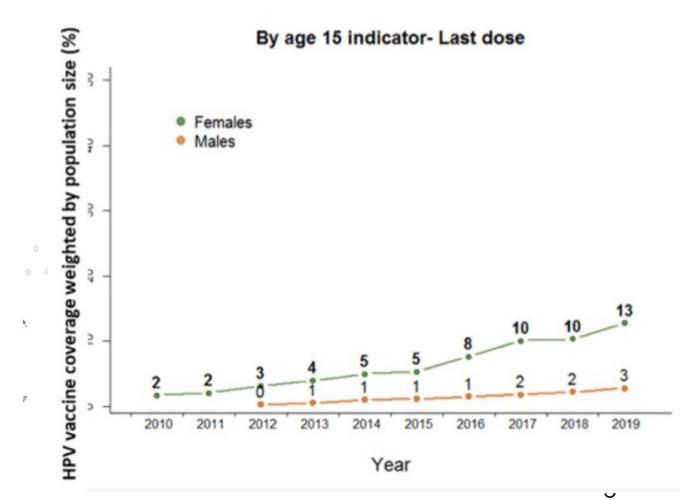
> Margaret Stanley Department of Pathology University of Cambridge UK

Prophylactic HPV VLP Vaccine Profiles

	Cervarix Bivalent vaccine	Gardasil Quadrivalent vaccine	Gardasil9 Nonavalent vaccine
Manufacturer	Glaxo Smith Kline	Merck	Merck
Volume	Per dose 0.5ml	Per dose 0.5ml	Per dose 0.5ml
Adjuvant	ASO4: Al(OH) ₃ 500mg MPL® 50mg	Amorphous Aluminium 225mg Hydroxyphosphate sulphate®	Amorphous Aluminium 500mg Hydroxyphosphate sulphate®
Antigens	L1 HPV16 20µg L1 HPV18 20µg	L1 HPV6 20μg L1 HPV11 40μg L1 HPV16 40μg L1 HPV18 20μg	L1 HPV630μgL1 HPV1140μgL1 HPV1660μgL1 HPV1840μgL1 HPV3120μgL1 HPV3320μgL1 HPV4520μgL1 HPV5220μgL1 HPV5820μg
Expression system	Hi-5 Baculovirus	Yeast: Saccharomyces cereviseae	Yeast Saccharomyces cereviseae
Schedule 9-26yrs (initial) >15 years (2014) 9-15 years	Intra muscular O, 1, 6 months O, 1, 6 months O,6 to 12 months	Intra muscular 0,2,6 months 0,2,6 months 0,6 to 12 months	Intra muscular 0,2,6 months 0,2,6 months 0,,6 to 12 months
FDA licens	ed 2009	2006	2014

EMA licensed

Immunobridging trials 9-15 year olds vs 16-23 year olds


The antibody quantity and quality in 9-13 year olds after 2 vaccine doses at 0-6months is as good as that generated after 3 doses 0,1/2,6 months in 16-23 year olds in whom efficacy has been shown

WHO SAGE April 2014 meeting

Upon review of the evidence, SAGE recommended

- a 2-dose schedule for girls, if vaccination is initiated prior to 15 years of age.
- The recommended minimal interval between the 2 doses is 6 months.
- A 3-dose schedule remains necessary if immunization is initiated after the girls' 15th birthday.
- This interval may be extended to 12 months if this facilitates administration
- A 3-dose schedule (i.e. at 0, 1-2, and 6 months) remains recommended for immunocompromised individuals, including those known to be HIV-infected."

Global HPV vaccine coverage (2019)

Hurdles for HPV vaccine programmes

Cost

vaccine cost implementation and administrative costs

Logistics difficulty of delivering 2 doses over 6 months no infrastructure for adolescent immunization

Inflexibility of a 2 dose schedule for the adolescent

Alternative dosage schedules

What is sufficient for protection?

efficacy and duration of 1 dose of 2v,4v or 9v vaccines nation wide cohort studies post hoc analysis of RCTs observational studies of effectiveness by dose number RCT

Immunogenicity and duration of protection post hoc analysis of RCTs

Rate of histologically confirmed CIN3 and vaccine dose National screening cohort 2007-2014 women born 1992 or earlier Australia

Abnormality	Vaccination number of doses	Number of women	Number of cervical abnormalities	Rate/1000 women years	Hazard Ratio
CIN/AIS	0	48845	645	7.6	1.0
CIN/AIS	1	8618	89	4.9	0.65 (0.52-0.81)
CIN/AIS	2	18190	174	4.6	0.61 (0.52-0.72)
CIN/AIS 2007-2014	3	174995	1496	4.5	0.59 (0.54-0.65)

Brotherton etal 2019 PVR 8

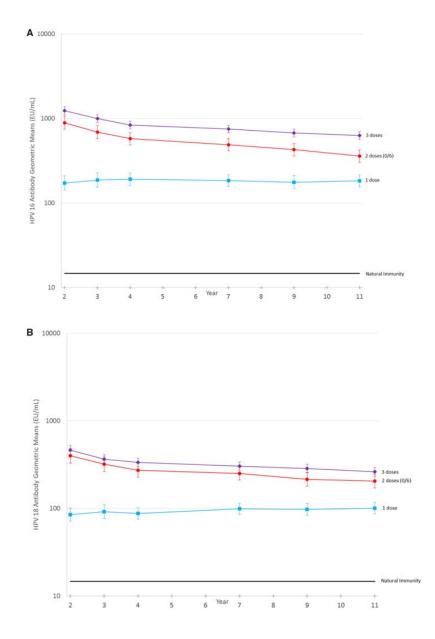
Trials with data on 1 dose of HPV vaccine

Trial Country	Outcome	Vaccine	Cohort Age (yrs)	Description
CVT Costa Rica	Efficacy immunogenicity	2v	18-25 Female	Post hoc analysis
IARC India	Efficacy immunogenicity	4v	10-18 Female	Observational Cohort from an original RCT
KEN SHE Kenya	Efficacy	2v 9v	15-20 Female	RCT 1 dose 2v 9v MenA
DoRIS Tanzania	Immunogenicity	2v 9v	9-14 Females	RCT 1,2,3 dose groups
Thailand Impact	Effectiveness - Impact	2v	Grade 8 females	Girls in one province received 1 dose; in another 2 doses. Baseline and post- vaccination prevalence surveys

*

Vaccine efficacy in women against persistent infection with HPV 16/18 after 3,2 or 1 dose of 2v vaccine -36 months follow up

Kreimer et al JNCI 103 2011


Doses	Trial arm	Events	% PI 95% CI	Vaccine efficacy 95% Cl
3 dose 0,1,6	Unvacc n=3010 Vacc n=2957	133 25	4.4 <i>(3.7-5.2)</i> 0.85 <i>(0.56-1.2)</i>	80.9 (71.1- 87.7)
2 dose 0,1	Unvacc N=380 Vacc N=422	17 3	4.5 <i>(2.7-6.9)</i> 0.7 <i>(0.18-1.9)</i>	84.1 (54.2- 96.3)
1 dose	Unvacc n=188 Vacc N=196	10 0	5.3 <i>(2.7-9.3)</i> 0.0 <i>(0.0-1.5)</i>	100 (66.5- 100)

Post hoc analysis of RCT: women (18-25 years) randomized to receive 3 doses of 2v vaccine or control but not all completed full series but available for follow up

Vaccine efficacy in women against persistent infection with HPV 16/18 after 3,2 or 1 doses of 2vHPV vaccine – CVT trial 11 years follow up

Doses	Number of subjects	% Prevalent HPV 16/18 (95% CI)	% Vaccine Efficacy (95% CI)
3	1365	2.0 (1.3-2.8)	80.0 (70.7-87.0)
2	62	1.6 (0.1-7.7)	83.8 (19.5-99.2)
1	112	1.8 (0.3-5.8)	82.1 (40.2-97.3)
Control	1783	10.0 (8.7-11.4)	Referent

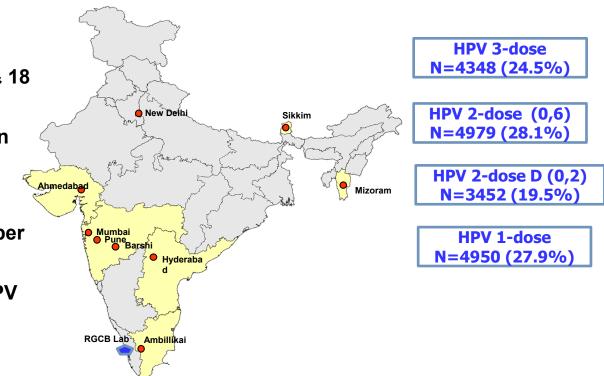
Kreimer et al JNCI 2020 112(10):1038–1046

One dose of bivalent HPV vaccination induces stable HPV16 serum antibodies for 11 years: Costa Rica vaccine trial

Kreimer, et al. J Natl Cancer Inst 2020

Trials with data on 1 dose of HPV vaccine

Trial Country	Outcome	Vaccine	Cohort Age (yrs)	Description
CVT Costa Rica	Efficacy immunogenicity	2v	18-25 Female	Post hoc analysis
IARC India	Efficacy immunogenicity	4v	10-18 Female	Observational Cohort from an original RCT
KEN SHE Kenya	Efficacy	2v 9v	15-20 Female	RCT 1 dose 2v 9v MenA
DoRIS Tanzania	Immunogenicity	2v 9v	9-14 Females	RCT 1,2,3 dose groups
Thailand Impact	Effectiveness - Impact	2v	Grade 8 females	Girls in one province received 1 dose; in another 2 doses. Baseline and post- vaccination prevalence surveys


*

Planned 2- vs 3- dose 4-HPV Vaccine multi-centric RCT

- Study was planned as an RCT to compare 2 vs. 3 doses of 4-HPV
- Eligibility: Unmarried, unvaccinated girls between 10 & 18 yrs of age
- Plan was to recruit 10,000 girls in each arm
- Total 9 sites participated
- Recruitment initiated in September 2009
- Government of India stopped HPV vaccination in all trials in April 2010
- Till then 17,729 (88.6% of the target) girls were already vaccinated

International Agency for Research on Cancer

World Health Organization

Courtesy Dr Partha Basu

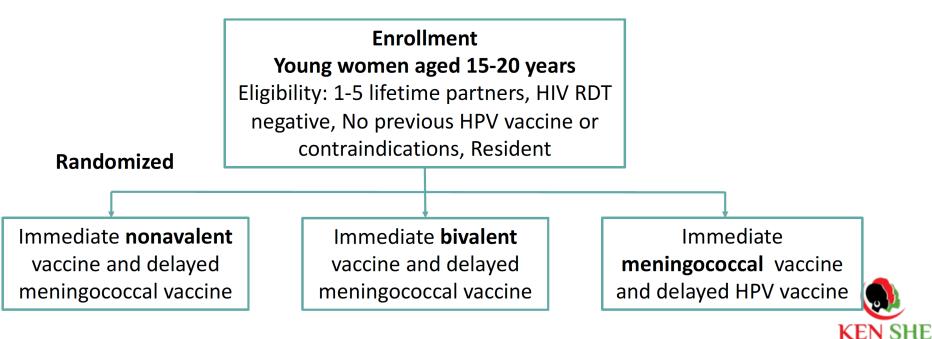
India IARC trial: protection after 1,2 or 3 doses of 4v vaccine through 10 years

Dose	Number of subjects	%Persistent 16/18 HPV infection (95% CI)	%VE against persistent infection (95% CI)
3 (0,2,6)	1649	0.1 (0.0-0.4)	91.2% (75.3-98.7)
2 (0,6)	1645	0.1 (0.0-0.4)	94.5% (82.4-99.8)
1	2454	0.0 (0.0-0.3)	94.2% (83.7-99.1)
Control	1268	2.7 (1.9-3.7)	Referent

Subjects

- Women vaccinated age 10-18 years randomized to receive 2 or 3 doses 4v vaccine
- Control unvaccinated age matched to married vaccinated subjects recruited as controls Persistent infection
- defined as same HPV type detected in consecutive samples at least 10 months apart Vaccine efficacy
- Adjusted for background HPV infection frequency
- time between marriage and first specimen collection
- Number of cervical specimens per subject

Basu et al Lancet Oncology 2021;22:1518-29


Trials with data on 1 dose of HPV vaccine

Trial Country	Outcome	Vaccine	Cohort Age (yrs)	Description
CVT Costa Rica	Efficacy immunogenicity	2v	18-25 Female	Post hoc analysis
IARC India	Efficacy immunogenicity	4v	10-18 Female	Observational Cohort from an original RCT
KEN SHE Kenya	Efficacy	2v 9v	15-20 Female	RCT 1 dose 2v 9v MenA
DoRIS Tanzania	Immunogenicity	2v 9v	9-14 Females	RCT 1,2,3 dose groups
Thailand Impact	Effectiveness - Impact	2v	Grade 8 females	Girls in one province received 1 dose; in another 2 doses. Baseline and post- vaccination prevalence surveys

*

KEN SHE Trial Efficacy of single dose HPV vaccination among young African women Study Design

- Individual randomized, double-blind, control, three group trial
- Multi-center: Three KEMRI Center locations in Kenya

Courtesy Dr Ruanne Barnabas, Dr Nelly Mugo and the KenShe investigators

Barnabas, et al. DOI 10.21203/rs.3.rs-1090565/v1; accepted for publication at NEJM Evidence

Efficacy of single dose HPV vaccination among young African women

Barnabas, et al. DOI <u>10.21203/rs.3.rs-1090565/v1</u>; accepted for publication at NEJM Evidence

Vaccine	Number subjects	%Persistent HPV 16/18 infection	Incidence/ 100PY	%Vaccine efficacy (95% CI)
9vHPV	496	1	0.17	97.5 (81.7-99.7)
2vHPV	489	1	0.17	97.5 (81.6-99.7)
MCV	473	36	6.83	Referent

Randomised Trial - 1 dose 2vHPV or 9vHPV or meningococcal vaccine

- 2250 Kenyan women 15-20yrs:1-5 lifetime partners; HIV-ve
- 1458 evaluated at month 18 for efficacy in mITT HPV16/18 cohort

mITT: modified intention to treat

- HPV 16/18-ve (external genital and cervical swabs) at enrollment and month 3
- HPV antibody negative at enrollment

HPV 16/18/31/33/45/52/58 mITT eficacy

Vaccine	Number of subjects	Cases persistent HPV	Incidence/ 100 PY	% VE (95% CI)
9vHPV	325	4	1.03	88.9 (68.5-96.1)
MCV	490	29	9.42	

Barnabas, et al. DOI 10.21203/rs.3.rs-1090565/v1; accepted for publication

- Adolescent girls and young women were effectively protected from HPV infection over the first 18 months post vaccination
- VE was >97% in keeping with licensure trials for three doses
- 9v hr vaccine-type HPV incidence is high (~9/100 woman-years) - 1/3 higher than previous vaccine trials
- Rigorous design, high fidelity to the protocol, high retention, clear ascertainment of outcomes

Trials with data on 1 dose of HPV vaccine

Trial Country	Outcome	Vaccine	Cohort Age (yrs)	Description
CVT Costa Rica	Efficacy immunogenicity	2v	18-25 Female	Post hoc analysis
IARC India	Efficacy immunogenicity	4v	10-18 Female	Observational Cohort from an original RCT
KEN SHE Kenya	Efficacy	2v 9v	15-20 Female	RCT 1 dose 2v 9v MenA
DoRIS Tanzania	Immunogenicity	2v 9v	9-14 Females	RCT 1,2,3 dose groups
Thailand Impact	Effectiveness - Impact	2v	Grade 8 females	Girls in one province received 1 dose; in another 2 doses. Baseline and post- vaccination prevalence surveys

*

DoRIS

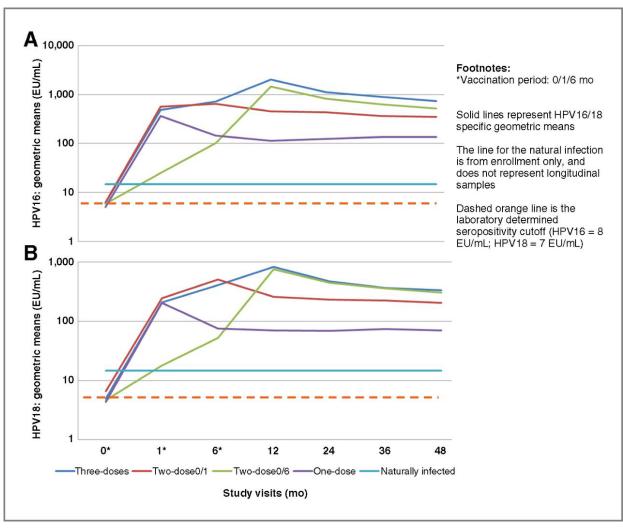
Dose Reduction Immunobridging & Safety Study of 2vHPV and 9vHPV in Tanzanian girls

- 930 girls aged 9-14 years randomized to 1, 2 or 3 doses of 2vHPV or 9vHPV
- Objectives:
 - Demonstrate non-inferiority of HPV 16/18 antibody response after 1 dose compared with 2 or 3 doses of same vaccine at month 24
 - Demonstrate non-inferiority of HPV 16/18 GMCs comparing 1 dose in DoRIS with historical efficacy cohorts that received 1 dose (CVT, India IARC, KEN SHE).

Interim findings

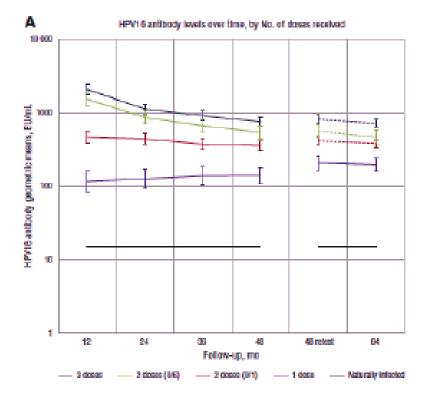
- Seropositivity >97.5% for all doses of both vaccines
- Antibody levels by dose, vaccine, and kinetics over time similar to those in other HPV vaccine studies
- Avidity no difference between dose groups or vaccines
- Immunobridging showed that 1-dose responses were non-inferior in DoRIS compared with those in studies where 1-dose efficacy observed

Alternative dosage schedules


What is sufficient for protection

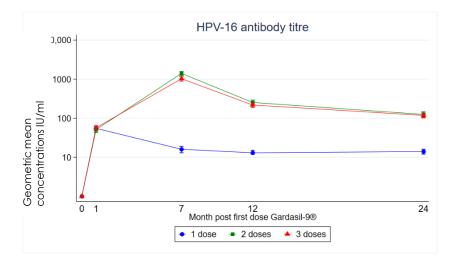
efficacy and duration of protection with 1 dose of bi- or quadri-valent vaccine post hoc analysis of RCTs nation wide cohort studies observational studies of effectiveness by dose number KEN-SHE RCT


Immunogenicity and duration of protection post hoc analysis of RCTs


A and B, HPV16 (top) and HPV18 (bottom) specific antibody geometric means: by number of vaccine doses and study visit.

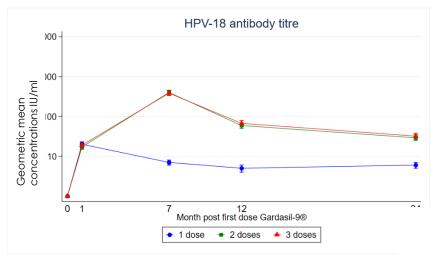
Safaeian M et al. Cancer Prev Res 2013;6:1242-1250

Costa Rica Vaccine Trial: 7 year immunogenicity data



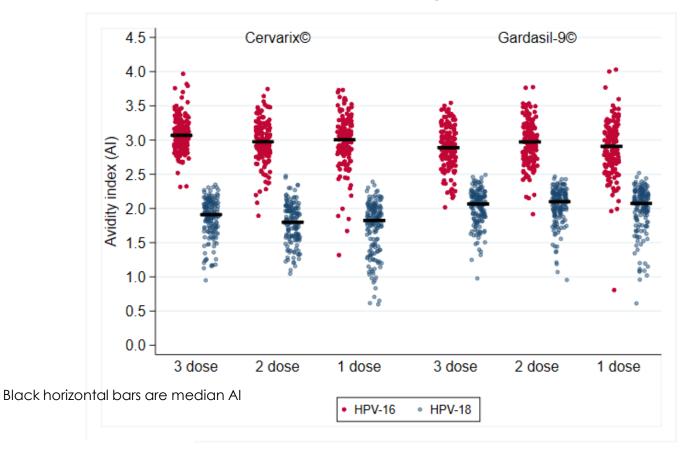
- HPV antibody level by ELISA
- Sample size n = 104, 156, 61 and 165 from 1d, 2d (0,6), 2d (0,1) and 3d, respectively
- 100% of all doses groups seropositive,

Serum antibody avidity at 7 years post-vax (HPV16)


3 doses	2.5	(2.4-2.6)
2 doses (0/6m)	2.3	(2.1-2.6)
2 doses (0/1m)	2.3	(2.1-2.4)
1 dose	2.0	(1.8-2.4)

HPV 16/18 antibody concentrations over time – Gardasil-9[©]

 Similar to observations in other HPV vaccine studies


- In 2D and 3D arms, levels decline after peak at M7 (last dose at M6)
- 2D and 3D levels similar at M24
- In 1D arm, levels relatively constant from M12 (plateau)

Courtesy Dr Deborah Watson Jones, Dr Kathy Baisley and the DoRIS investigators Watson-Jones, et al. <u>http://dx.doi.org/10.2139/ssrn.4055429</u>

Distribution of HPV 16/18 avidity index at M24

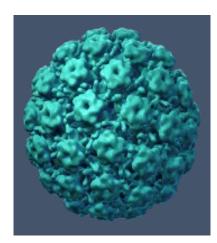
Antibody avidity is an indicator of strength of binding of antibody to antigen

HPV 16/18-specific antibody avidity index (AI) determined in ELISA by the ratio of antibody concentrations in serum samples treated or not treated with Guanidine-HCI

Courtesy Dr Deborah Watson Jones and the DoRIS investigators

Antibody responses in natural HPV infection and after HPV VLP vaccination

Natural infection


- 70-80% women 20-30% men sero-convert
- Antibody response to HPV infection is typically slow and weak
- Neutralising antibody responses are to L1
- Cross neutralising antibodies not detected
- Antibody generated in natural infections in women is partially protective against subsequent incident infection but not in men
- Avidity index very variable

HPV L1 VLP vaccination

- In clinical trials 100% women and men seroconvert
- Peak antibody titres are 2-3 logs greater than in natural infections
- Neutralising antibody persists for >16 years post immunisation
- Both type specific and cross neutralising antibodies detected
- No breakthrough disease caused by vaccine HPV types detected after 16 years follow up in RCTs
- Avidity index consistently high
- No antibody threshold level for the protection provided by HPV vaccines has been identified
- No immune correlate

Why are HPV vaccine antibody responses so much stronger than natural infection – its all about the VLP

Size 50-55nm

- optimal for entry into lymphatics, migration to the draining lymph node, take up by subcapsular sinus macrophages, transport to B cell follicles
- particles in this size range most readily taken up by dendritic cells
 Geometry of the VLP is critical
- A multivalent protein antigen 360 copies of L1 assembled as pentamers in a highly dense repetitive crystalline array
- neutralising epitopes displayed and spaced at the optimal distance of 8-10nm across the L1 pentamers crosslinks BCRs efficiently
- BCR crosslinking and clustering are attributes known to be critical for B cell activation, and the induction of high affinity, high avidity antibody

Induce innate and adaptive immune responses

Evoke robust memory responses -long lived plasma cells reactive memory B cells Serological memory persistence of antibody Reactive memory anamnestic or recall response

Why are vaccine antibody responses so much stronger than natural infection

Context: Route of Immunisation

Natural infection - poor access of virus to lymph nodes intra-epithelial infectious cycle -no viraemia infectious virus shed from mucosal surfaces¹

VLP vaccines delivered intramuscularly

rapid access of VLPs to blood vessels, local lymph nodes, spleen (access to all B cell subsets) avoids virus immune evasion strategies¹

Evokes robust memory responses

Reactive memory

Serological memory persistence of antibody anamnestic or recall response

¹Stanley MA Vaccine 2006.

Study name (country)	Evidence type	Vaccine(s)	Brief description	2020	2021			2022				2023			2024					
				Q4	QI	Q2 Q3	Q4	QI	Q2	Q3	Q4	Q1 Q	22	Q3 Q	4 QI	Q2	Q3	Q4	025	2026
DoRIS Fanzania	Immuno- genicity	HPV2 and HPV9	Girls 9-14 yo randomized to 1, 2, or 3 doses of HPV2 or HPV 9; n=155 each arm		b. In	months	, dge to		IARC	India										
K EN SHE Kenya	Efficacy (virological EP)	HPV2 vs HPV9 vs MenACWY (delay HPV)	Girls 15-20 yo randomized to 1 dose of HPV2, HPV9, or MenACWY; n=750 each arm; delayed dose 2 planned			18 mon	tha							Yea	7 2 3					
HANDS The Gambia	Immuno- genicity	HPV9	Girls 4-8 yo and 9-14 yo randomized to 1 or 2 doses; girls 15-26 yo given 3 doses; n=344 each arm									24 mont	r tha		e	Mo mon	the			
Primavera Costa Rica	Immuno- genicity	HPV2 and HPV4	Girls 10-13 yo 1-dose HPV2 immunobridge to women 18-25 yo 3-doses HPV4; n=520 each								24 1	months			e	Mo mon	tha			
E SCUDDO Costa Rica	Efficacy (virological EP)	HPV2 and HPV9	Girls 12-16 yo randomized to 1 or 2 doses of HPV2 or HPV9; n=5000 each arm													4	*	5	<	
n dia ARC India	Efficacy (virological and histological EP)	HPV4	Girls 10-18 yo received 1, 2, 3 doses of HPV4; n=17586, 1-dose n=4980			fection en						ilon end					ita	Perula	tion	CIN 2 endpo
C VT Costa Rica	Efficacy till Y11 / Immuno- genicity	HPV2 vs control	Women 18-25 yo received 1, 2, or 3 doses of HPV2; n=3727, 1-dose n=196								14/3	16 yr f/1	a					endp from ~ 1- recipi	1000 lose	from 3 1-dose recipie screen
Thailand mpact study Thailand	Effectiveness (virological EP)	HPV2	Girls in grade 8 given 1 or 2 doses; n=~8000 each arm prevalence surveys of girls grades 10, 12; n=2,400 each grade x 2 provinces			Year	2						Ye	ar 3						
HOPE South Africa	Effectiveness (virological EP)	HPV2	Girls 17-18 yo serial prevalence surveys: unvaccinated (17-18 yo), 1-dose catch up (15-16 yo), and 2-dose routine (9 yo) cohorts; n≥3260			elim. dose	aurVe	1 dose ey data uding H									Y	ear 3		

Where next

Formal evidence for 1 dose for boys

One dose efficacy in older age groups

Immunocompromised HIV -the elephant in the room

Coverage is crucial 1 dose removes hurdles but achieving >80-90% vaccine coverage is needed for disease elimination

Thank you