Boosting or not boosting: what may we learn from vaccine case studies ?

Claire-Anne Siegrist

Center for Vaccinology and Neonatal Immunology University of Geneva, Switzerland

0 -1- 6 : the "classical" immunization schedule !

Memory B cells are resting cells which do not protect: when and why do we need to boost?

Protection against tetanus

Surveillance of tetanus in France 2002-2004 : 67 cases

Failure of vaccine prevention in Europe !

Source : Euvac.net

Measles in Switzerland (n = 2772) : Age distribution

What? Why?

3267 cases (immuniz. records) : non immunized

- 3049 (93%)
- 133 (4.1%) 1 dose
- 63 (1.9%) 2 doses
- 22 (0.7%) ? dose(s)

Failure to have been immunized !

• The most frequent vaccine failure is the failure to have been immunized !

Distribution of protective levels of antidiphtheria and tetanus antibodies in the US

McQuillan GM, Ann Intern Med. 2002

- The most frequent vaccine failure is the failure to have been immunized !
- Herd immunity may mask / compensate for individual vaccine failures !

Mumps Outbreak USA May 2, 2006, > 2000 cases

- College students (median age 21 y)
- Parotitis: 66% reported cases
- Reported complications
 - orchitis
 - meningitis
 - encephalitis
 - deafness
 - oophoritis, mastitis, pancreatitis
- 25 hospitalizations
- No deaths

Cf wild-type mumps...

Similar observations elsewhere !

77% - 97% of students with 2 vaccine doses !!

© Sonja Hutchins, CDC, 2006, www.acha.org/.../Mumps_in_the_Midwest_ACHAPresentation.ppt

Potential explanations for vaccine failure after 2 mumps vaccine doses

 $\mathbf{1}$

 $\sqrt{}$

1

??√

 $\sqrt{?}$

- Primary vaccine failure
- Secondary vaccine failure
 - Loss of neutralizing Ab
 - Loss of T cell immunity
- Mismatch between vaccine and outbreak strains (1 neutralization)
- High viral load close contacts (boarding schools)

- The most frequent vaccine failure is the failure to have been immunized !
- Herd immunity may compensate for individual vaccine failures !
- Live attenuated viral vaccines induce weaker responses than WT infections – these may persist for decades (measles, rubella) or wane more rapidly if vaccines are (too) highly attenuated (mumps, chickenpox) !

Role of immune memory in vaccine-induced protection

What is needed for protection against hepatitis B ?

Prevention of acute hepatitis B : anti-HBsAg titer > 10mIU/ml at time of exposure

What happens if you have lost vaccine antibodies at time of exposure?

Acute hepatitis B infection (anti-HBc Abs)... Reactivation of vaccine-induced memory cells protect against chronic hepatitis B !

- The most frequent vaccine failure is the failure to have been immunized !
- Herd immunity may compensate for individual vaccine failures !
- Live attenuated viral vaccines induce weaker responses than WT infection – and these may persist or wane more rapidly (chickenpox) !
- Protection may persist after the disappearance of effectors (antibodies / T cells) : demonstrated role for immune memory !

When is memory sufficient or not sufficient for protection ?

Sufficient

-
-
- ...
- ...
-

Not sufficient

When is memory sufficient or not sufficient for protection ?

Ray Borrow²

Recalling memory responses before the bugs win the race...

Short incubation

- Hib
- Pneumococcus
- Meningococcus
- Influenza (Ab)

Prolonged incubation

Hepatitis BHepatitis A

• • • •

Mucosal only infections • HPV !! • Pertussis !! Time for Ag to reach the LN and reactivate memory cells into Agproducing cells

Insufficient memory !

- The most frequent vaccine failure is the failure to have been immunized !
- Herd immunity may compensate for individual vaccine failures !
- Live attenuated viral vaccines induce weaker responses than WT infection – and these may persist or wane more rapidly (chickenpox) !
- Protection may persist after the disappearance of vaccine effectors: role for immune memory !
- Persistence of immune memory may NOT be sufficient to confer protection...

Does memory last forever?

Kaiser Permanente Vaccine Study Center

What ? 1. 0-5 years ?

Pertussis outbreak, California 2010 Kaiser Permanente Vaccine

Study Center

What? **0-5 years** ? 1. 2. 5-10 years ?

Which study design?

Klein NP et al. N Engl J Med 2012;367:1012-1019

whether

1000 M

1.0

0.0

Kaiser Permanente Vaccine Study Center

Study Design

Using a case control design, we examined the relationship of vaccinations with the likelihood of a positive pertussis test. We looked at waning (time since last vaccine), effectiveness of Tdap, and the effect of delayed or missed vaccines.

Misegades LK JAMA 2012

Table 4. Odds Ratios for Pertussis Disease Associated With Receipt of 5 DTaP Doses and Estimated Vaccine Effectiveness for Each Year Following the Complete DTaP Series

Primary Analysis ^a				Secondary Analysis ^b		
Cases, No. (n = 682)	Controls, No. (n = 2016)	OR (95% CI)	Estimated VE, % (95% Cl)	Controls, No.	OR (95% IE)	Estimated VE, % (95% IE)
53	19	1 [Reference]	1 [Reference]	11	1 [Reference]	1 [Reference]
629	1997	0.11 (0.06-0.21)	88.7 (79.4-93.8)	1018	0.13 (0.08-0.16)	87.2 (83.6-91.9)
,					1	
53	19	1 [Reference]	1 [Reference]	11	1 [Reference]	1 [Reference]
19	354	0.02 (0.01-0.04)	98.1 (96.1-99.1)	230	0.02 (0.01-0.02)	98.3 (97.8-98.9)
51	391	0.05 (0.02-0.09)	95.3 (91.2-97.5)	158	0.07 (0.04-0.09)	93.4 (91.1-96.0)
79	366	0.08 (0.04-0.13)	92.3 (86.6-95.5)	154	0.11 (0.06-0.14)	89.5 (85.7-93.7)
108	304	0.13 (0.07-0.24)	87.3 (76.2-93.2)	140	0.16 (0.10-0.20)	84.1 (80.1-90.4)
141	294	0.17 (0.09-0.31)	82.8 (68.7-90.6)	158	0.18 (0.12-0.24)	82.0 (75.8-88.4)
231	288	0.29 (0.15-0.54)	71.2 (45.8-84.8)	178	0.27 (0.17-0.35)	73.3 (65.1-83.0)
-	Cases, No. (n = 682) 53 629 53 19 51 79 108 141 231	Prim Cases, No. (n = 682) Controls, No. (n = 2016) 53 19 629 1997 53 19 19 354 51 391 79 366 108 304 141 294 231 288	Primary Analysis ^a Cases, No. (n = 682) Controls, No. (n = 2016) OR (95% Cl) 53 19 1 [Reference] 629 1997 0.11 (0.06-0.21) 53 19 1 [Reference] 629 1997 0.11 (0.06-0.21) 53 19 1 [Reference] 19 354 0.02 (0.01-0.04) 51 391 0.05 (0.02-0.09) 79 366 0.08 (0.04-0.13) 108 304 0.13 (0.07-0.24) 141 294 0.17 (0.09-0.31) 231 288 0.29 (0.15-0.54)	Cases, No. (n = 682) Controls, No. (n = 2016) CoR (95% Cl) Estimated VE, % (95% Cl) 53 19 1 [Reference] 1 [Reference] 629 1997 0.11 (0.06-0.21) 88.7 (79.4-93.8) 53 19 1 [Reference] 1 [Reference] 19 354 0.02 (0.01-0.04) 98.1 (96.1-99.1) 51 391 0.05 (0.02-0.09) 95.3 (91.2-97.5) 79 366 0.08 (0.04-0.13) 92.3 (86.6-95.5) 108 304 0.13 (0.07-0.24) 87.3 (76.2-93.2) 141 294 0.17 (0.09-0.31) 82.8 (68.7-90.6) 231 288 0.29 (0.15-0.54) 71.2 (45.8-84.8)	Primary Analysis ^a Cases, No. (n = 682) Controls, No. (n = 2016) Estimated VE, OR (95% Cl) Controls, % (95% Cl) 53 19 1 [Reference] 1 [Reference] 11 629 1997 0.11 (0.06-0.21) 88.7 (79.4-93.8) 1018 53 19 1 [Reference] 1 [Reference] 11 19 354 0.02 (0.01-0.04) 98.1 (96.1-99.1) 230 51 391 0.05 (0.02-0.09) 95.3 (91.2-97.5) 158 79 366 0.08 (0.04-0.13) 92.3 (86.6-95.5) 154 108 304 0.13 (0.07-0.24) 87.3 (76.2-93.2) 140 141 294 0.17 (0.09-0.31) 82.8 (68.7-90.6) 158 231 288 0.29 (0.15-0.54) 71.2 (45.8-84.8) 178	Primary Analysis ^a Secondary Analysis Cases, No. (n = 682) Controls, No. (n = 2016) Cont (95% Cl) Estimated VE, % (95% Cl) Controls, No. OR (95% IE) 53 19 1 [Reference] 1 [Reference] 11 1 [Reference] 629 1997 0.11 (0.06-0.21) 88.7 (79.4-93.8) 1018 0.13 (0.08-0.16) 53 19 1 [Reference] 1 [Reference] 11 1 [Reference] 53 19 1 [Reference] 1 [Reference] 11 1 [Reference] 53 19 1 [Reference] 1 [Reference] 11 1 [Reference] 19 354 0.02 (0.01-0.04) 98.1 (96.1-99.1) 230 0.02 (0.01-0.02) 51 391 0.05 (0.02-0.09) 95.3 (91.2-97.5) 158 0.07 (0.04-0.09) 79 366 0.08 (0.04-0.13) 92.3 (86.6-95.5) 154 0.11 (0.06-0.14) 108 304 0.13 (0.07-0.24) 87.3 (76.2-93.2) 140 0.16 (0.10-0.20) 141 294 0.17 (0.09-0.31) 82.8 (68.7-90.6)

Abbreviations: IE, interval estimate; OR, odds ratio; VE, vaccine effectiveness.

^aORs and estimated VE, accounting for clustering by county and clinic.

^DMedian and 95% IE based on 200 random, iterative samples of n=1029 controls and assuming an even distribution of controls in each age category from 4 to 10 years. When divided into "time since fifth dose" categories, the <12-month category captures a larger number of individuals (n=230) since the fifth dose can be administered at ages 4, 5, or 6 years.

Kaiser Permanente Vaccine Study Center

Case control study

Waning of DTaP each year

Rapid waning of immunity after DTaP5

Kaiser Permanente Vaccine Study Center

What? 1. 0-5 years ? 2. 5-10 years ? 10-15 years ? 3.

Which design ?

Klein NP et al. N Engl J Med 2012;367:1012-1019

whether

WAR N

00

2. <u>Tdap effectiveness</u> (Presented elsewhere²) Table: Probability of a positive pertussis PCR test, based on vaccination with Tdap or not. (Effectiveness = (1 - Odds Ratio)

Control Type	Cases N	Controls N	Odds Ratio	95% CI	P-value
PCR Negative	566	9,166	0.448	0.359-0.559	< 0.001
KPNC Pop	566	19,439	0.373	0.296-0.469	< 0.001

Interpretation: Tdap is 55% effective at preventing PCRconfirmed pertussis

Case control study

Only 55% effectiveness of adolescent Tdap **booster in DTaP-primed** children! Why is vaccine efficacy lower in adolescents than in infants ???

Klein NP et al. N Engl J Med 2012;367:1012-1019

Few cases of pertussis in young adults > 18 years ?

What ?
1. 0-5 years ?
2. 5-10 years ?
3. 10-15 years ?
4. > 18 years ?

Potential explanations for the failure of pertussis vaccines to confer sustained immunity

 $\sqrt{\sqrt{(aP >> wP)}}$

 $\sqrt{(\text{presumed})}$

 $\sqrt{(rapid)}$

 $\sqrt{\sqrt{\sqrt{aP}}}$ (aP >> wP)

- Primary vaccine failures
- Secondary vaccine failures
 - Loss of vaccine Ab
 - Loss of T cell immunity (Th17)
 - Loss of « boostability » with ↑ number of aP doses (mech ?) √√ (aP)
 - Lack of timely natural boosting $\sqrt[4]{}$ (aP >> wP)
- Mismatch btwn vaccine and outbreak strains $\sqrt{(?)}$
- Others ???

- The most frequent vaccine failure is the failure to have been immunized !
- Herd immunity may compensate for individual vaccine failures !
- Live attenuated viral vaccines induce weaker responses than WT infection – and these may persist or wane more rapidly (chickenpox) !
- Protection may persist after the disappearance of vaccine antibodies : role for immune memory !
- Persistence of immune memory may NOT always confer protection !
- Immune memory may not be forever !

• The most frequent vaccine failure is the failure to

Much remains to be studied !

vaccine failures !

- Live attenuated viral vaccines induce weaker responses than WT infection – and these may persist or wane more rapidly (chickenpox)
- Protection may persist after th vaccine antibodies : role for im
- Persistence of immune memo confer protection !
- Immune memory may not

