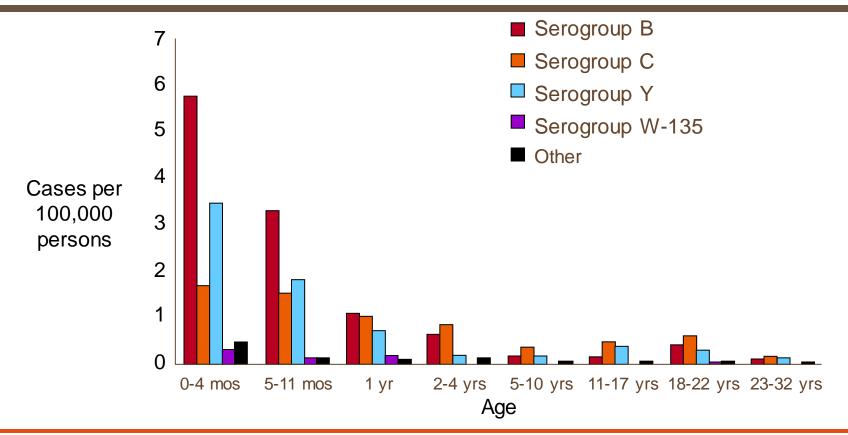


Approaches towards new meningococcal vaccines

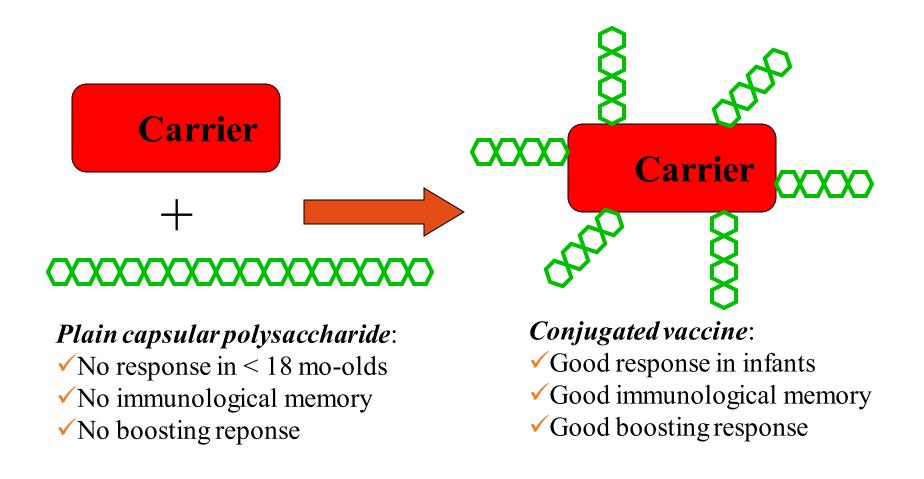
Giuseppe Del Giudice, MD, PhD


Global Head, Translational Medicine, Novartis Vaccines, Siena, Italy

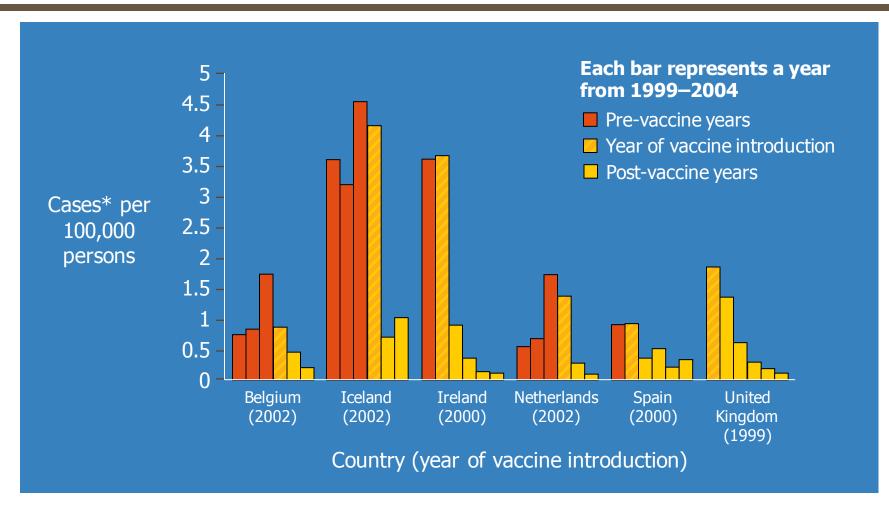
ADVAC 2014, Veyrier, 19 May 2014

Age- and Serogroup-Specific Meningococcal Disease Incidence

United States, 1993-2002


Invasive Meningicoccal Disease has serious consequences and impacts on highly vulnerable populations: infants and adolescents

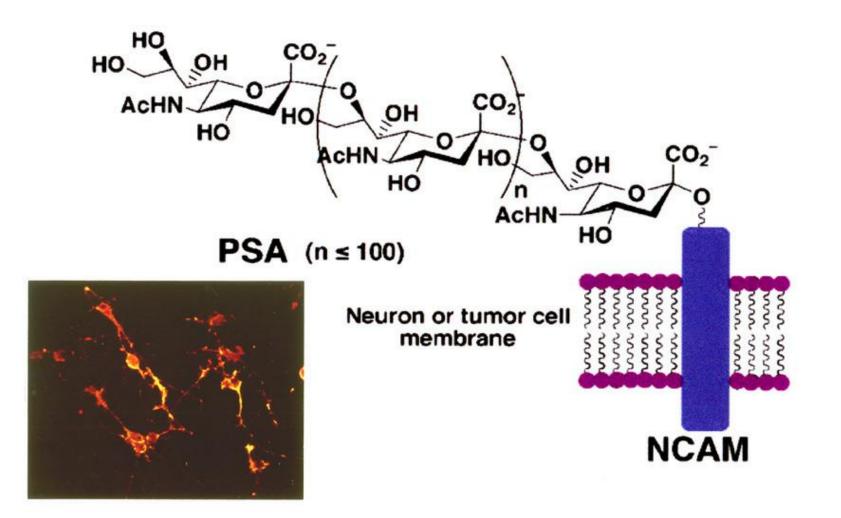
Mortality high despite treatment


- •Sequelae in 11 19% of survivors (amputations, hearing loss, skin scarring)
- Bimodal pattern of disease
 - •Peak incidence in infants < 6 months of age; mortality 8%
 - •2nd peak incidence in adolescents; mortality ~20%

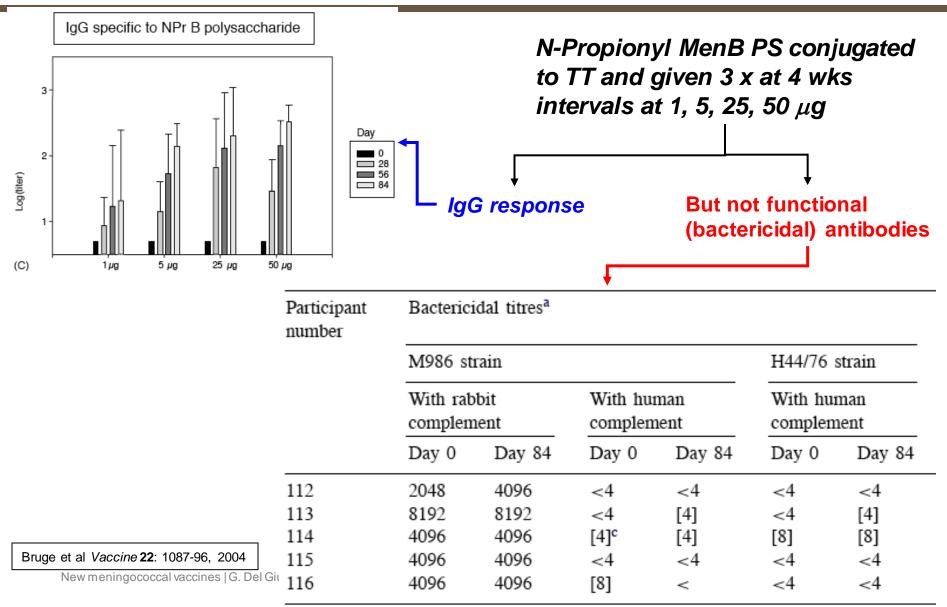
Shepard CW, et al. Pediatrics. 2005;115:1220-1232.

Polysaccharides and conjugates

Impact of an Immunization Campaign Using Serogroup C Meningococcal Conjugate Vaccine *Europe*

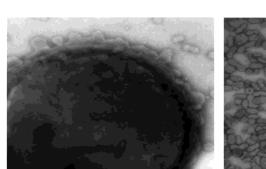

*Cases of meningococcal serogroup C. Trotter CL, et al. *FEMS Microbiol Rev*. 2007;31:101-107.

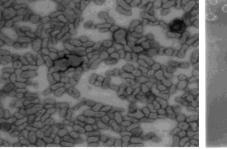
New meningococcal vaccines | G. Del Giudice | 19 May 2014 | ADVAC |


Status of the vaccines needed for elimination of bacterial meningitis

Pathogen	Status of the vaccine
Hib	Available
Pneumococcus	Available
ManA, MenC and MenCY	Available
MenA, Men C, MenY, MenW	Available
MenB	Trials and tribulations !

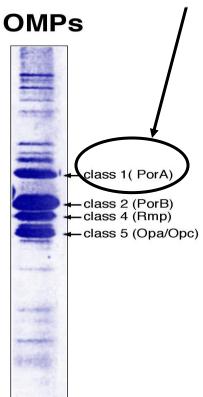
MenB capsular polysaccharide is a self antigen




Poor immunogenicity of NPr MenB PS in humans

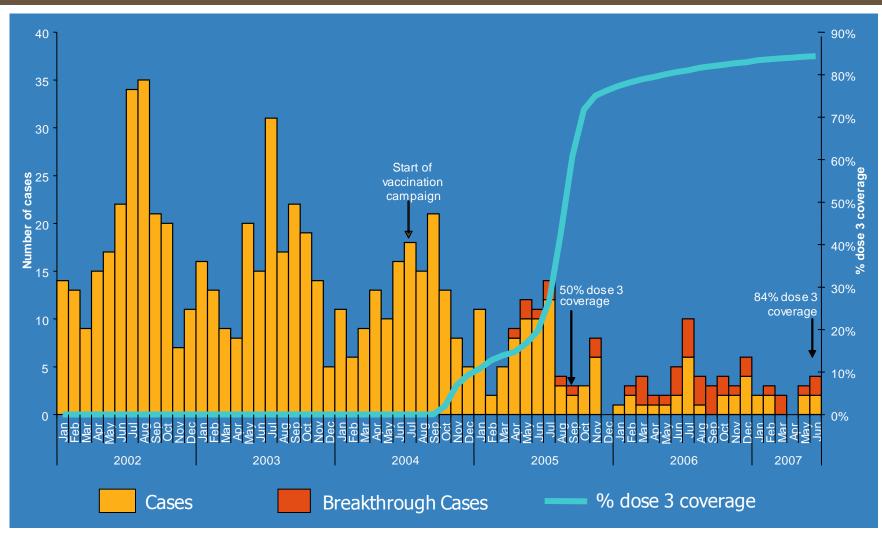
OMV vaccine preparation

Bactericidal (= protective) antibody primarily directed at PorA strain-specific



es purified

"blebbing" meningococcus extracted OMV vesicles


SDS PAGE of OMVs

Three doses of OMV vaccines induce *good bactericidal titers against the homologous strain* at all ages. No or low titers against heterologous strain in infants and children.

Bactericidal responses (percentages)

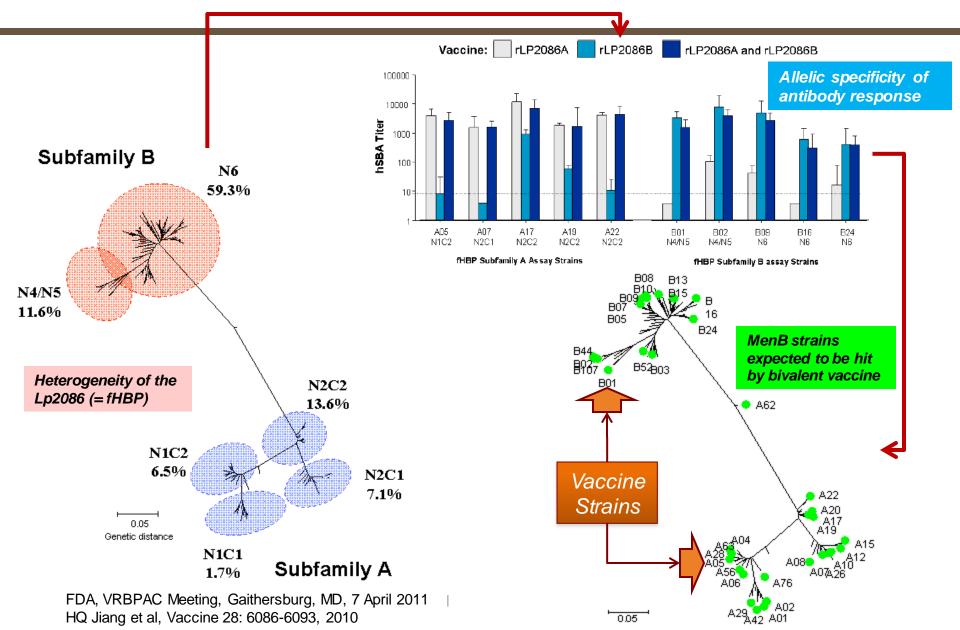
Strain	Norwegian vaccine		Cuban vaccine			
	Infants	Children	Adults	Infants	Children	Adults
Chilean	12	35	60	10	31	37
Cuban	2	24	46	90	78	67
Norwegian	98	98	96	31	41	56

Successful program using PorA tailor made OMV vaccine against serogroup B meningococcal disease: *New Zealand*

Martin D, et al. The Epidemiology of Meningococcal Disease in New Zealand in 2006. Report prepared for the Ministry of Health by the Institute of Environmental Science and Research Limited (ESR). Wellington: Ministry of Health. Unpublished 2007 data.

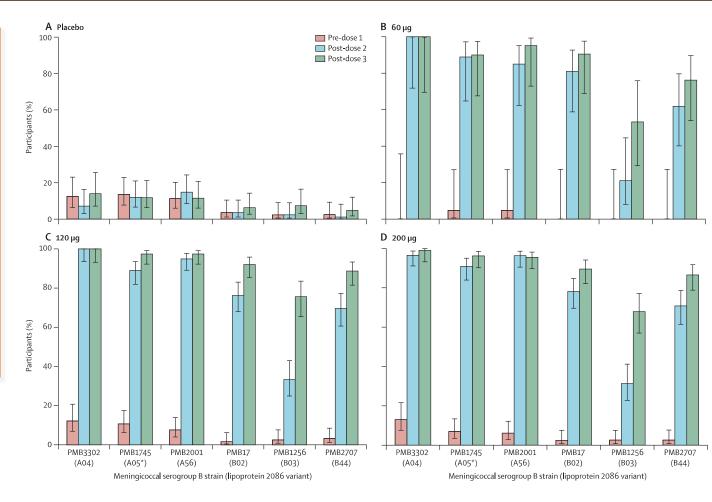
NspA

- Neisserial surface protein A (NspA) is a conserved, surface-exposed outer membrane protein of *Neisseria meningitidis* shown to induce a bactericidal antibody response in animals
- Healthy 18-50-year-old adults were assigned to receive, in a dose escalating manner, 3 doses of 1 of 5 formulations of an experimental, unfolded, recombinant NspA (rNspA) vaccine
- An antibody rise measured by enzyme immunoassay was elicited with a dose-related increase that reached a maximum with the 125 μ g dose.


• No bactericidal antibodies were detected after any of the rNspA formulations

Study	Vaccine formulation	Geometric mean antibody level (95% confidence interval)				
	Pre-immunization	Post-dose 1	Post-dose 2	Post-dose 3		
Bactericida	al assay					
A	Menomune®	1.74 (0.73-4.15) ⁸	1.74 (0.73-4.15)	-	-	
	Placebo	1.23 (0.77-1.97)	-	-	1.23 (0.77-1.97)	
	RNspA 7 µg	1.23 (0.77-1.97)	-	-	1.23 (0.77-1.97)	
	RNspA 35 µg	1.49 (0.93-2.41)	-	-	1.67 (1.00-2.77)	
	RNspA 105 µg	1.49 (0.93-2.41)	-	-	1.86 (1.09-3.17)	
в	Placebo	2.11 (0.87-5.13)	-	-	1.76 (0.74-4.17)	
	RNspA 125 µg	1.00 (1.00-1.00)	-	_	1.21 (0.92-1.59)	
	RNspA 250 µg	1.00 (1.00-1.00)	-	-	1.09 (0.91-1.32)	

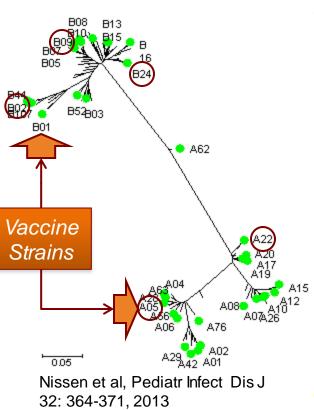
Geometric mean anti-rNspA antibody after one dose of Menomune® or each of three doses of rNspA or placebo


Halperin et al, Vaccine 25:450-457, 2007

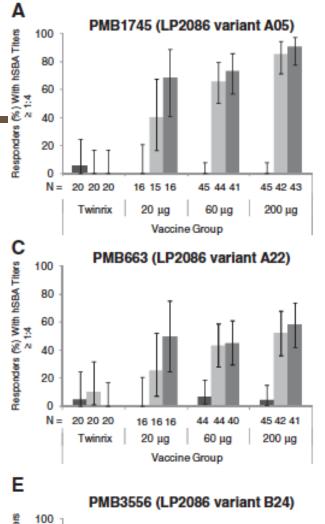
Lp2086 (= fHBP)

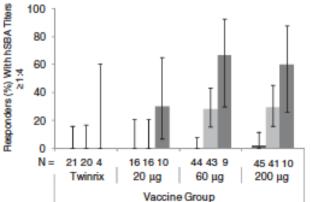
Immunogenicity of Lp2086 vaccine in adolescents Percentage of subjects with detectable bactericidal antibodies

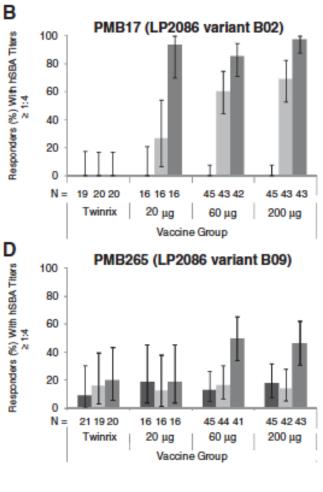
Well conserved surface exposed lipoprotein. Two main alleles (A and B) Candidate vaccine: rec Lp2086 allele A and rec Lp2086 allele B with aluminium phosphate, three times IM (0, 1, and 6 months) to 18-25 years old subjects at dosages of $60 \mu g$, 120 μ g or 200 μ g of each protein

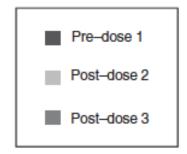


Richmond et al, Lancet Infect Dis 2012; 12: 597-607

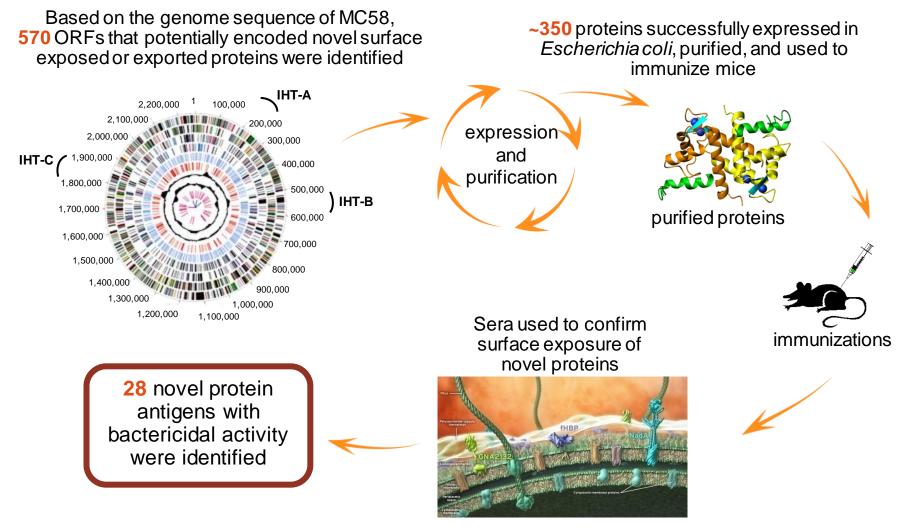

...and in 8-14 yr-old children

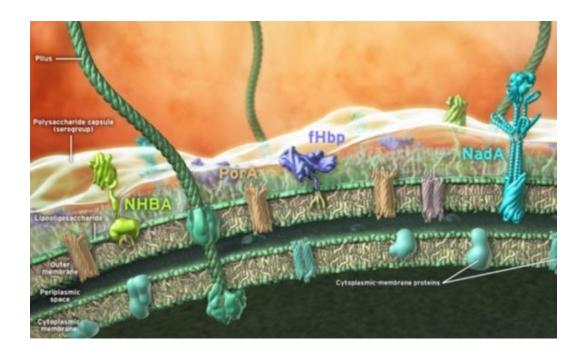

Randomized, observer-blinded phase //II study


- 127 healthy 8-14 year-old children
- Vaccine (var. A05 + var. B01) given at 0, 1 and 6 months



New meningococcal vaccines | G. Del Giudice




Novel Antigens Identified by Reverse Vaccinology: Example of MenB

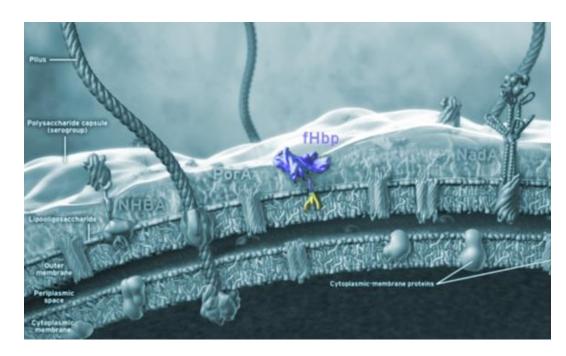
ORF = open reading frame.

Based on Rappuoli R. Vaccine. 2001;19:2688-2691; Tettelin H, et al. Science. 2000; 287:1809-1815; Modified from Rosenstein NE, et al. N Engl J Med. 2001;344:1378-1388.

Each surface antigen important for survival or virulence

Each surface antigen important for survival or virulence

NadA: Neisserial adhesin A


- Promotes adherence to and invasion of human epithelial cells¹⁻³
- Possible importance in colonization

Each surface antigen important for survival or virulence

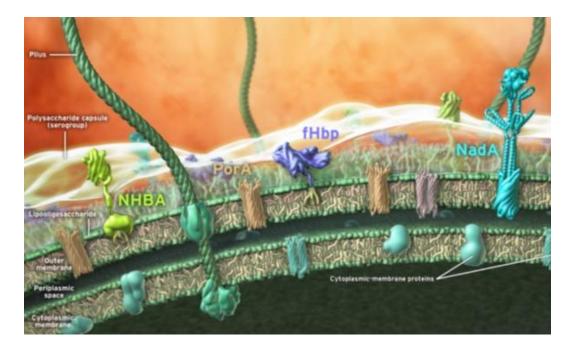
- NadA: Neisserial adhesin A
 - Promotes adherence to and invasion of human epithelial cells¹⁻³
 - Possible importance in colonization
- fHbp: factor H binding protein variant 1
 - Binds factor H, which enables bacterial survival^{5,6}

Each surface antigen important for survival or virulence

- NadA: Neisserial adhesin A
 - Promotes adherence to and invasion of human epithelial cells¹⁻³
 - Possible importance in colonization
- fHbp: factor H binding protein variant 1
 - Binds factor H, which enables bacterial survival^{5,6}

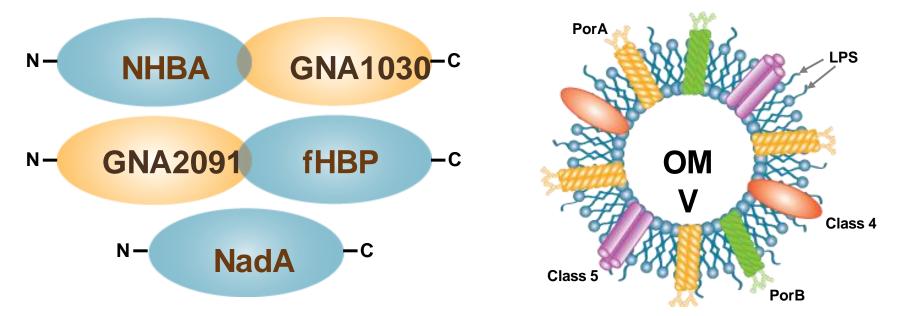
NHBA: Neisserial heparinbinding antigen

 Binds heparin, which may increase the serum resistance of bacteria⁷⁻⁹



Each surface antigen important for survival or virulence

- NadA: Neisserial adhesin A
 - Promotes adherence to and invasion of human epithelial cells¹⁻³
 - Possible importance in colonization
- fHbp: factor H binding protein variant 1
 - Binds factor H, which enables bacterial survival^{5,6}
- NHBA: Neisserial heparinbinding antigen
 - Binds heparin, which may increase the serum resistance of bacteria⁷⁻⁹


Utilizing multiple antigens

- Provides broad coverage
- Maintains coverage against emergence of escape mutants

4CMenB Vaccine Composition

- Three protein antigens (two fusion proteins and one single polypeptide)
- Outer Membrane Vesicle (OMV) component (NZ PorA is P1.4)

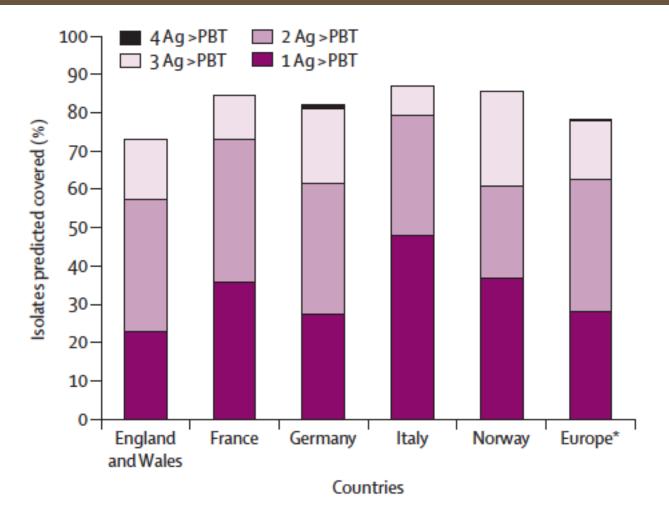
4CMenB is a suspension for injection

Dose	NHBA- GNA1030	fHBP- GNA2091	NadA	OMV	Al ³⁺
0.5ml	50 μg	50 μ g	50 μ g	25 μg	0.5 mg

New meningococcal vaccines | G. Del Giudice | 19 May 2014 | ADVAC |

Rationale for Multicomponent 4CMenB Vaccine

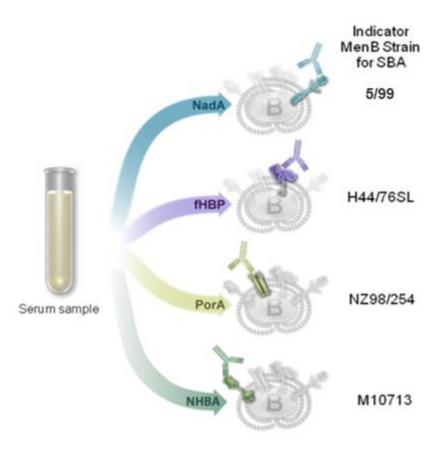
- Provide broad coverage in all age groups
- Minimize potential for escape mutants
- Induce synergistic bactericidal activities with multiple target antigens
- Include OMV:
 - Contains PorA, an important antigen
 - Induced protective immunity in all age groups in New Zealand
 - Provided coverage of hypervirulent clonal complex (41/44; Lineage 3)
 - Proven effective in clinical trials

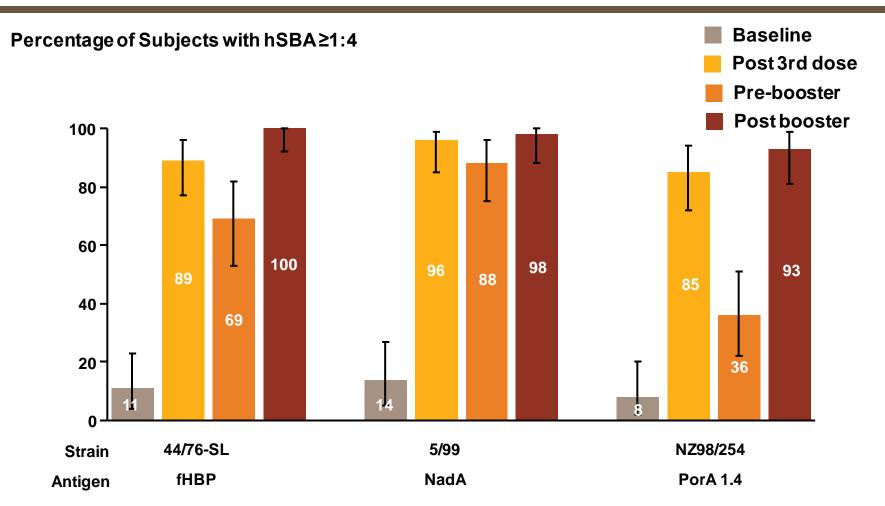

Predicted Serogroup B Strain Coverage of the 4CMenB Vaccine by Country

Country	Years	No. of strains	Predicted coverage (95% CI)	
United States ¹	2000–2008†	442	91% (72%–96%)	
Greece ²	2008–2010	52	88% (60%–96%)	
Italy ³	2007/8*	54	87% (70%–93%)	
Norway ³	2007/8*	41	85% (76%–98%)	
France ³	2007/8*	200	85% (69%–93%)	
Germany ³	2007/8*	222	82% (69%–92%)	
Brazil ⁴	2010 [‡]	99	81% (71%–95%)	
Australia ⁵	2007–2011	373	76% (63%–87%)	
Czech Republic ³	2007–2010	108	74% (58%–87%)	
England & Wales ³	2007/8*	535	73% (57%–87%)	
Spain ³	2008–2010	300	69% (48%–85%)	
Canada ⁶	2006–2009	157	66% (46%–78%)	

*All invasive capsular group B isolates tested. [†]Downweighted with respect to outbreak strains from Oregon. [‡]Represents about 53% of capsular group B cases.

1. Kim E, et al. Poster presented at: 18th International Pathogenic Neisseria Conference (IPNC) Meeting; September 9-14, 2012; Würzburg, Germany. Poster P270; 2. Data on file, Novartis Vaccines and Diagnostics; 3. Vogel U, et al. *Lancet Infect Dis.* 2012 [in press]; 4. Lemos AP, et al. Poster presented at: 18th International Pathogenic Neisseria Conference (IPNC) Meeting; September 9-14, 2012; Würzburg, Germany. Poster P272; 5. Nissen M, et al. Poster presented at: 18th International Pathogenic Neisseria Conference (IPNC) Meeting; September 9-14, 2012; Würzburg, Germany. Poster P269; 6. Bettinger J, et al, IMPACT Investigators. Poster presented at: 5th Vaccine and International Society for Vaccines (ISV) Annual Global Congress; October 2-4, 2011; Seattle, WA.

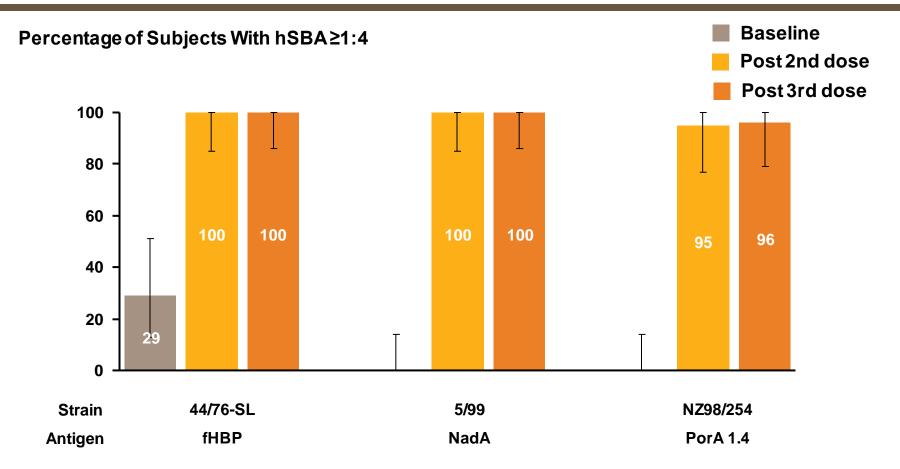

Percentage of strains predicted to be covered by no. of antigens and by country


Vogel et al, Lancet Infect Dis 13: 416-425, 2013

Strain Panel for Demonstrating Antigenspecific Bactericidal Responses

- NadA: 5/99, NadA allele 2
- **fHbp:** H44/76, variant 1.1
- OMV: NZ98/254, source of OMV and therefore matched to PorA and also the other OMV components
- NHBA: M10713, variant 10 (vaccine is variant 2)

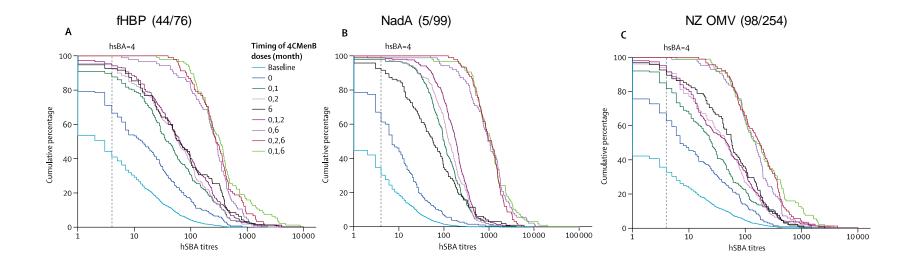
hSBA Titers ≥1:4 After 3 Doses of Novartis MenB Vaccine and Persistence to 12 Months of Age Phase II Immunogenicity in Infants



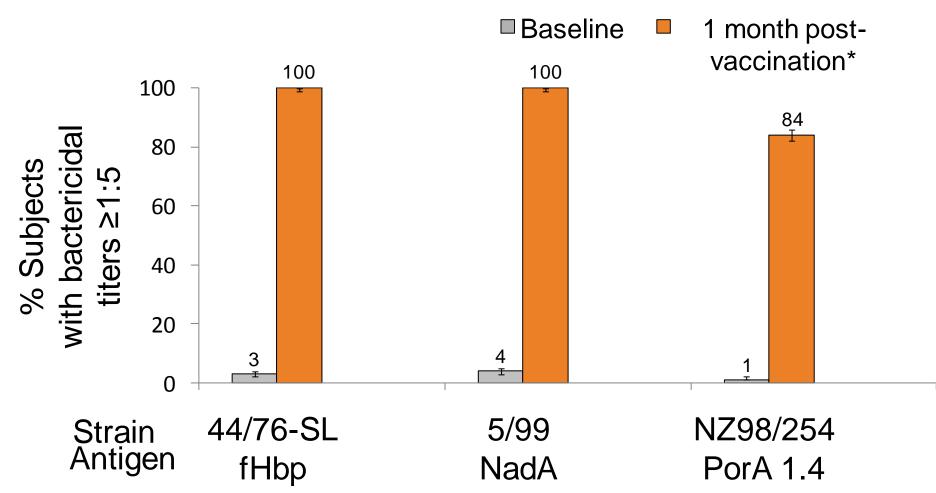
MenB vaccine = rMenB + OMV. Findlow et al, Clin. Infect Dis 51: 1127-1137, 2010.

New meningococcal vaccines | G. Del Giudice | 19 May 2014 | ADVAC |

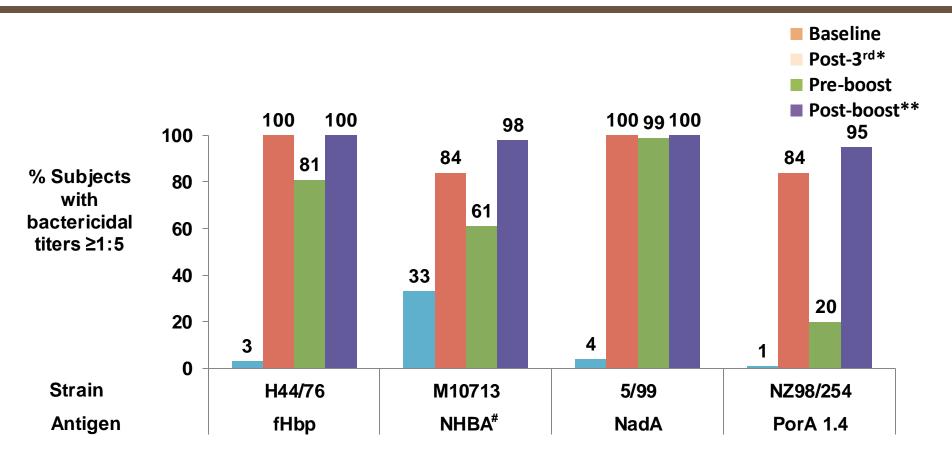
hSBA Titers ≥1:4 After 2nd and 3rd Doses of Novartis MenB Vaccine


Phase II Immunogenicity in Infants 6-8 Months of Age

MenB vaccine = rMenB + OMV. Snape et al, Pediatr Infect Dis J 29: e71-e79, 2010.

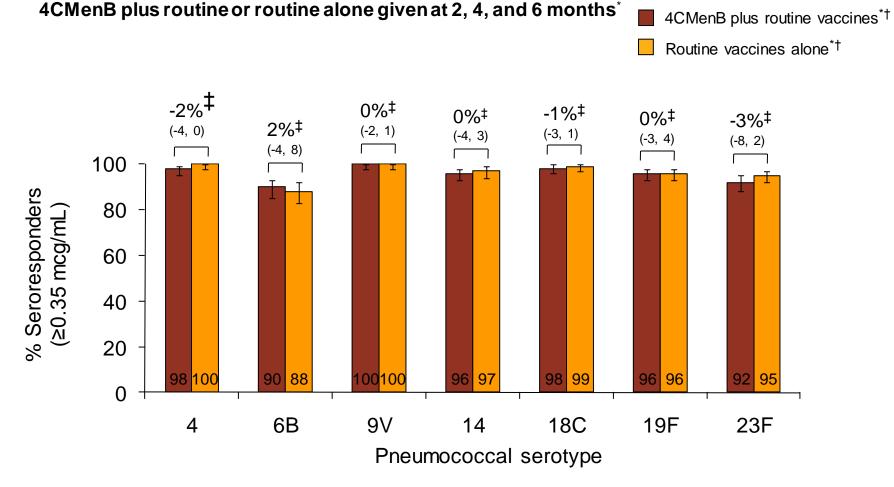

New meningococcal vaccines | G. Del Giudice | 19 May 2014 | ADVAC |

Immunogenicity of 4CMenB vaccine (Novartis) in adolescents. Bactericidal antibody responses


Santolaya et al, Lancet 379: 617-624, 2012

Percentage of Infants with Bactericidal Titers ≥1:5 After a Primary Series of 4CMenB* at 2, 4, and 6 Months of Age

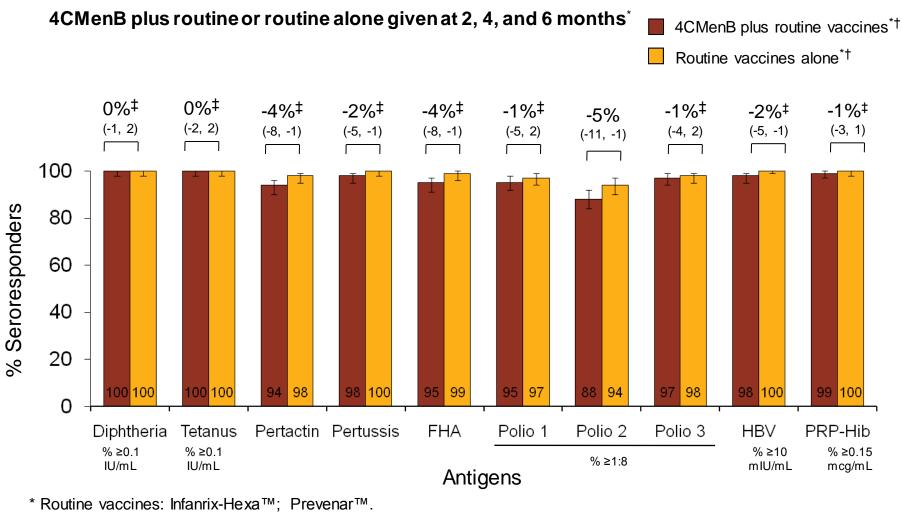
*Blood drawn at age 7 months, N=1149-1152; Coadministered with PGV/Pand DTPa-HPW/PV/HibDVAC Vesikari et al, Lancet 381: 825-835, 2013


Each Component of 4CMenB Induces a Robust Antigen-specific Bactericidal Response Infants immunized at 2, 4, 6 and 12 months of age in European Ph III

* Blood drawn at 7 months, N-1149-1152

** **Blood drawn at 13 months, N-421-424** #N<mark>RIV_namin</mark>gococcal vaccines | G. Del Giudice | 19 May 2014 | ADVAC |

Phase III Study in Infants Pneumococcal Seroresponse After Routine Vaccines Coadministered With 4CMenB or Routine Vaccines Alone in Infants



* Routine vaccines: Infanrix-Hexa™; Prevenar™.

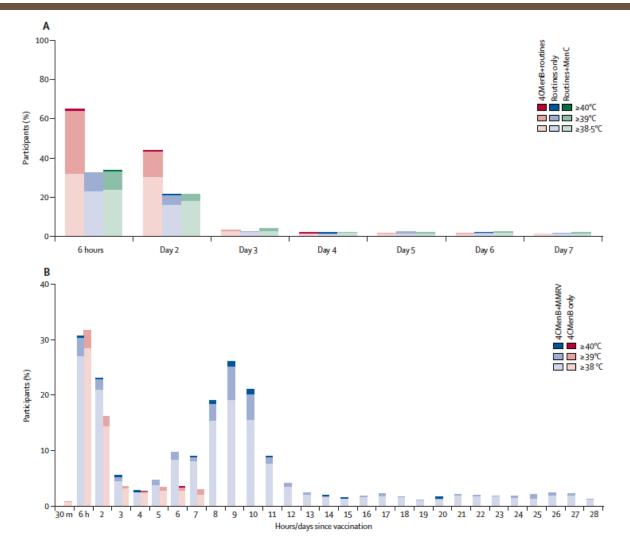
[†]n=242-243.

[†]Criteria met for LL 95% CI > -10% for difference in percent of responders. New meningococcal vaccines | G. Del Giudice | 19 May 2014 | ADVAC | Blood drawn at 7 months. Gossger et al, JAMA 307: 573-582, 2012

Phase III Study in Infants Immunogenicity of Routine Infant Vaccines Given With or Without 4CMenB

[†]n=238-248.

[‡]Criteria met for LL 95% CI for difference in seroresponders > -10%. New meningococcal vaccines | G. Del Giudice | 19 May 2014 | ADVAC | Blood drawn at 7 months. Gossger et al, JAMA 307: 573-582, 2012 NOVARTIS


Serious Adverse Events and Adverse Events After Any Vaccination

	4CMenB+Routine (N=2480)	Routine Vaccines (N=658)	MenC+Routine Vaccines (N=488)
Serious Adverse Events	8%	8%	6%
Adverse Events	87%	83%	73%

*Routine vaccines: PCV7 and DTPa-HPV-IPV/Hib

New meningococcal vaccines | G. Del Giudice | 19 May 2014 | ADVAC |

Fever rates after 4CMenB vaccine given without or without routine vaccines

Vesikari et al, Lancet 381: 825-835, 2013

In summary

- Conventional approaches for MenB vaccine development have consistently failed: conjugates not feasible; proteins variable and not immunogenic (no bactericidal antibodies induced)
- A tailor-made approach does work (e.g. OMV in New Zealand), but it has limited geographical impact.
- The genome-based approach has allowed the identification of a large number of potential vaccine candidates which are now in clinical trials
- Data from these clearly show that a protein-based vaccine against MenB offering a broaden coverage against circulating strains is a reality at all ages, including infants
- This has led to the approval of the first vaccine against MenB able to confer broad protection starting from 2 months of life

Conclusions. Positive opinion granted by CHMP on 12 November 2012 for use starting from the age of 2 months

15 November 2012 EMA/CHMP/669278/2012 Committee for Medicinal Products for Human Use (CHMP)

On 15 November 2012, the Committee for Medicinal Products for Human Use (CHMP) adopted a positive opinion, recommending the granting of a marketing authorisation for the medicinal product Bexsero, suspension for injection intended for the prophylaxis against invasive disease caused by *N. meningitidis* group B strains. The applicant for this medicinal product is Novartis Vaccines and

The approved indication is: "Bexsero is indicated for active immunisation of individuals from 2 months of age and older against invasive meningococcal disease caused by *Neisseria meningitidis* group B. The impact of invasive disease in different age groups as well as the variability of antigen epidemiology for group B strains in different geographical areas should be considered when vaccinating. See section 5.1 of SmPC for information on protection against specific group B strains. The use of this vaccine should be in accordance with official recommendations." It is proposed that Bexsero be prescribed by physicians experienced in the disease caused by *Neisseria meningitidis* group B. Search

Authored article

MenB vaccine should join childhood vaccination programme

Q

Organisation:	Department of Health
Written on:	21 March 2014
Page history:	Published 21 March 2014
Policy:	Giving all children a healthy start in life
Topics:	Public health, +2 others
Writer:	Deputy Chief Medical Officer John Watson

Deputy Chief Medical Officer John Watson welcomes JCVI's recommendation for a new meningococcal B (MenB) immunisation programme.

Today marks an important step forward in tackling meningococcal B (MenB) disease, which can have a devastating and distressing impact, particularly for babies and young children. MenB is a disease that many parents of young children fear.

Our expert advisers on vaccination and immunisation, <u>the Joint Committee</u> on Vaccination and Immunisation (JCVI), have recommended that a recently <u>licensed MenB vaccine is added to the childhood immunisation programme</u>. The committee recommended that MenB immunisation should be offered to infants starting at 2 months of age, subject to the vaccine being obtained from the manufacturer at a cost-effective price which represents good value -for-money to the NHS.

The Department of Health, which requested JCVI's advice on MenB vaccine, has accepted this recommendation and will work to introduce the programme as quickly as possible. This timing will depend on being able to purchase a sufficient and continuing supply of vaccine at an appropriate

Bexsero recommendations for regional & national vaccination programs

Country	National	Regional	Funding	Infant	Children	Adolescent	High Risk	Note	
UK	<u>_</u>		Ŀ.				_	JCVI: Infants 2-4 moa, 2+1 schedule	
Germany	<u>,</u> *	<u>`</u> *	see note					Saxony: 2moa-18 yoa Ped Assoc.: all children Voluntary reimbursement by 40+ Sick Funds	
France	<u></u> *		* **					High risk, outbreak, epidemic, hyperendemic	
Italy	<u></u> *	<u>_</u>						Basilicata: infants, 3+1 Med Societies: all infants	
Australia	. ^*			.	_		.	ATAGI: young children, esp.<2 yoa; 15-19 yoa	
Austria	<u></u> *		see note				<u>_</u>	High risk reimbursable by regional insurance	
Czech Rep	. *			.	_		.	Vaccinology Society: 2 moa-10 yoa, 13-15 yoa	
Poland	*							From 2moa, no upper age limit	

* clinical recommendation, not linked to funding

** currently for outbreak only, preimburgement for high risk groups under review

Serogroup B meningococcal disease outbreaks in the US: Princeton University and University of California, Santa Barbara (UCSB)

- 8 cases at Princeton University from March to November 2013
 - Students or persons with links to the university
 - No fatalities; 2 cases with sequelae
 - Attack rate 134/100,000 among undergraduates

- 5 cases at UCSB from March to November 2013
 - Undergraduates (age 18-22 years): no epi-links
 - 4 recovered, 1 case with sequelae (bilateral foot amputation)
 - Attack rate of 21.1/100,000 among UCSB 17-22 year olds
 - 234-fold higher than incidence rate for 17-21 year olds in general US population

New meningococcal vaccines | G. Del Giudice | 19 May 2014 | ADVAC |

*Source: Outbreaks of Serogroup B Meningococcal Disease on University Campuses - 2013, Manisha Patel, MD MSc

US Adolescents vaccinated under expanded access treatment IND (CDC) (1/2) *Chronology*

- CDC approached FDA to explore the use of Bexsero in outbreak setting under an expanded access Investigational New Drug (IND) Protocol – August 2013
- Princeton Institutional Review Board approval and FDA Safe-to-Proceed letter issued – November 2013
- Vaccination campaign in Princeton started in December 2013
- CDC-sponsored expanded access IND approved by FDA for use in UCSB outbreak in January 2014
- Vaccination campaign at UCSB started in February 2013
 - Second dose in April 2014

Bexsero: Princeton and UCSB

BloombergBusinessweek lews From Bloomberg

Princeton Meningitis Outbreak Prompts /accine Import to U.S.

under shadow of UCSB amputation joNel Aleccia, NBC News

Princeton weighing whether

meningitis vaccines

By Tam Walkins and Haley Draznin, CNN

loveriter 17, 2013 - Vanheed 25eA GMT (074A

Sparts Bank Of Health

Princeton University To Co Vaccine Approved Oversea

Combat Meningitis Sussers in Used in Europe And Australia, But Is Not Use

man in mini in shi bu


News

REUT

Princeton weighs offering vaccine in r CNN

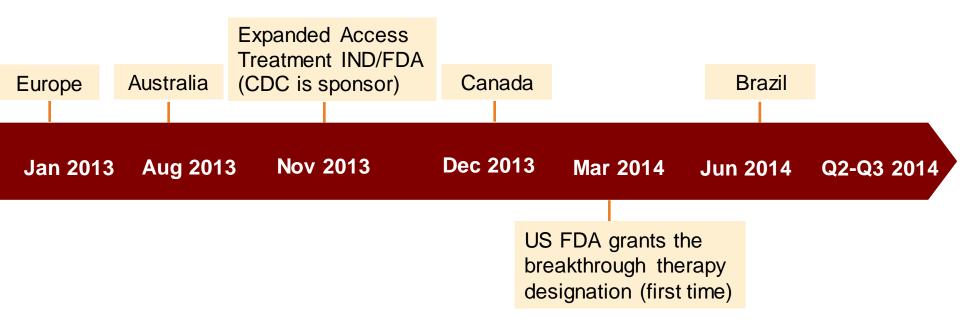
Princeton officials confirmed this week another case of on campus, the school's seventh in 2013.

Alternational Auto-Million Group

and federal officials leave a vession approved in Burran and Australia had not the United States with 100.000 The analysis). Printers (Drownely official) and streams have to protect students, feeling, and and

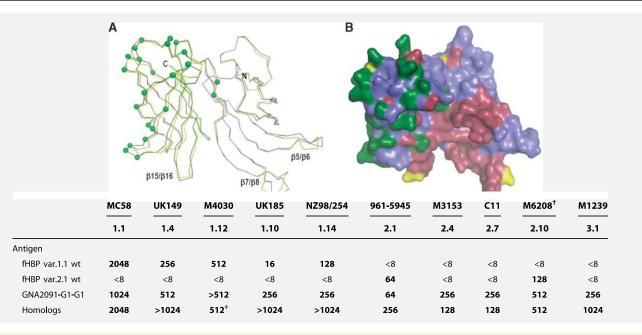
return on the by Leegan comput-Hought & crimently systematic statistic parenticity, contractionizing house its inter-

Princeton University can import vaccine to combat meningitis outbreak BY NOREN COOMELL

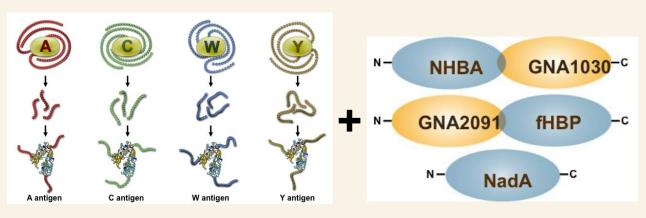


US Adolescents vaccinated under expanded access treatment IND (CDC) (2/2) Safety follow-up

- More than 14000 subjects were vaccinated with Bexsero as of end March 2014
- Mandatory reporting of all serious adverse events (SAEs) to FDA including expedited reporting for related events
- Additional collection including pregnancy exposures, vaccine failure (none to date) and non-serious adverse events screened by CDC Vaccine Safety group and summarized
- Preliminary data from Princeton vaccination campaign (more than 5000 exposed students)
 - Rate of SAEs reported is 2.0/1,000 vaccinees in first dose recipients and 0.2/1,000 vaccinees in second dose recipients
 - Consistent with clinical trial safety profile


Bexsero: 2013-14 approvals and submissions

Approvals


Submissions

Future perspectives

Molecular surgery Construct molecules containing all variants for broader responses

Scarselli et al, *Science Transl Med* 3: 91ra62, 2011

Vaccine blending Blend together conjugates of MenA, MenC, MenW, MenY and proteins of MenB

New meningococcal vaccines | G. Del Giudice | 19 May 2014 | ADVAC |

Acknowledgements

- Rino Rappuoli
 - ...and Mariagrazia Pizza and the large Men and MenB team at the Research Center of Novartis Vaccines
- Richard Moxon
- Craig Venter
- Clinical Development Team at Novartis Vaccines
- The Clinical investigators throughout the world
- The volunteers and the parents of the children participating in the trials

New meningococcal vaccines | G. Del Giudice | 19 May 2014 | ADVAC |

Neisseria meningitidis: Next Target for Vaccine Prevention of Pediatric Bacterial Meningitis and Septicemia

Late 1980s-mid 1990s ¹	Early 2000s ²	Present
<i>Haemophilus influenzae</i>	Pneumococcal	<i>N meningitidis</i>
type b (Hib) disease	disease	remains a primary cause
virtually	dramatically	of bacterial meningitis
eliminated	reduced	and septicemia

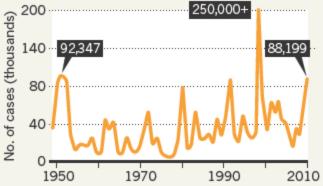
TABLE 1. FUNCTION AND CLASSIFICATION OF THE OUTER-MEMBRANE COMPONENTS OF NEISSERIA MENINGITIDIS.


	Component	FUNCTION	CLASSIFICATION
	Capsule	Protects against host-mediated, comple- ment-dependent bacteriolysis and phagocytosis	13 Serogroups (A, B, C, E-29, H, I, K, L, M, W-135, X, Y, Z)
	Outer-membrane		
	proteins		
2001	Porins	Create pores through which small hydro- philic solutes pass, cation-selective or anion-selective	
	PorA		Class 1 outer-membrane protein (serosubtyping)
Rosenstein et al, N. Engl. J. Med. 344: 1378-1388,	PorB		Class 2 or 3 outer-membrane protein (serotyping)
	Opacity-associated proteins		
	Opa	Promotes adherence to host cells and leukocytes	Class 5 outer-membrane pro-
	Opc	Promotes adherence to host cells	teins
	Reduction-modifiable protein	Unknown	Class 4 outer-membrane protein
	Lipooligosaccharide	Has potent endotoxic activity	13 Immunotypes*
	Pili	Promote initial adherence to epithelial and endothelial cells and erythrocytes	Class I and II*

*The classification is based on differences in antigenicity.

Development of MenA conjugated vaccine Tetanus toxoid as carrier protein

Immune response and antibody persistence to PsA-TT and PsA + C vaccines

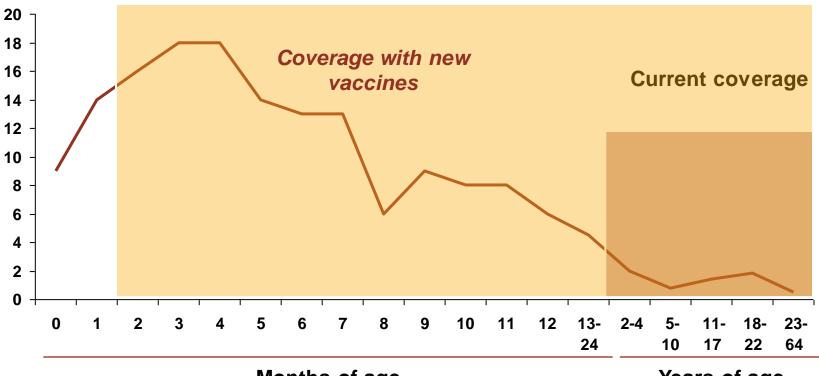

	Vaccine group					
	Ps-ATT conjugate vaccine (24 ^a)	PsA+C vaccine (25 ^a)	TT vaccine (25 ^a)			
Proportion of subjects with Mer Baseline	_					
% (95%CI) [N]	88 (68–97) [21]	92 (74–99) [23]	88 (69–98) [22]			
4 weeks % (95%CI) [N]	100 (86–100) [24]	100 (86–100) [25]	80 (59–93) [20]			
6 months % (95%CI) [N]	100 (86–100) [24]	100 (86–100) [24]	88 (69–98) [22]			
1 year % (95%CI) [N]	100 (86–100) [24]	100 (86–100) [24]	76 (55–91)[19]			
Proportion of subjects with four 4 weeks	r-fold increase in MenA SBA pre to post-vaccina	ation				
% (95%CI) [N]	83 (63–95) [20]	72 (51–88) [18]	12(2–31)[3]			
6 months % (95%CI) [N]	83 (63–95) [20]	64(42-82)[16]	4 (0-20)[1]			
1 year % (95%CI) [N]	83 (63–95) [20]	56 (35–76)[14]	0(0-14)[0]			
MenA SBA GMT						
Baseline % (95%CI) [<i>N</i>]	228 (84-617)	422 (191–929)	347 (140-861)			
4 weeks % (95%CI) [N]	8192 (5221–12,885)	5257 (2798–9878)	217 (73-644)			
6 months % (95%CI) [N]	6339 (4973-8023)	4096 (2798–5997)	458 (178–1176)			
1 year % (95%CI) [N]	4211** (3517–5078)	2226** (1552-3191)	256 (78-837)			

11 NOVEMBER 2010 | VOL 468 | NATURE | 143

EPIDEMIC CYCLE

Africa's meningitis epidemics usually take place in irregular cycles every 5–12 years.

Comparison of immune responses 1 month post-vaccination with either 3 doses of HibMenCY-TT at 2, 4, and 6 months of age or 1 dose of MPSV4 at 3 to 5 years of age

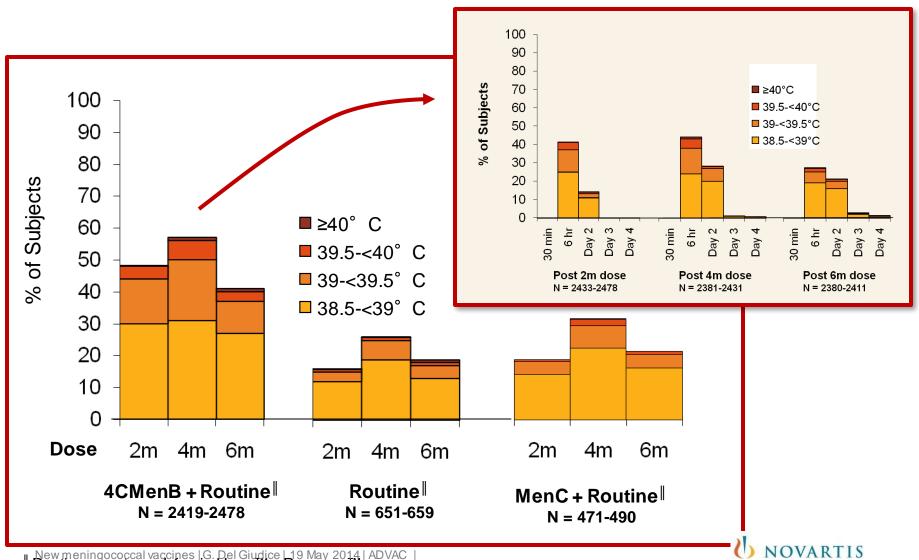

Antibody	Group	N	n	%	95% CI	n	%	95% CI	GMC or GMT*	95% CI
N. meningiti	dis serogroup C									
hSBA				≥1:4			≥1:8			
	HibMenCY-TT MPSV4	121 53	118 20	97.5* 37.7*	[92.9; 99.5] [24.8; 52.1]	116 16	95.9* 30.2*	[90.6; 98.6] [18.3; 44.3]	523.0* 6.4*	[398.8; 686.0] [3.6; 11.5]
rSBA				≥1:8			≥ 1:128	_		
	HibMenCY-TT MPSV4 Hib-TT	177 136 194	173 126 7	97.7* 92.6* 3.6	[94.3; 99.4] [86.9; 96.4] [1.5; 7.3]	171 105 2	96.6* 77.2* 1.0	[92.8; 98.7] [69.2; 84] [0.1; 3.7]	1096.5* 284.2* 4.4	[896.5; 1341.1] [210.1; 384.3] [4.1; 4.8]
N. meningiti	dis serogroup Y									
hSBA				≥1:4			≥1:8			
	HibMenCY-TT MPSV4	141 61	129 30	91.5* 49.2*	[85.6; 95.5] [36.1; 62.3]	126 29	89.4* 47.5*	[83.1; 93.9] [34.6; 60.7]	139.8* 9.1*	[102.6; 190.5] [5.8; 14.2]
rSBA			_	≥1:8			≥ 1:128			
	HibMenCY-TT MPSV4 Hib-TT	174 139 186	171 134 35	98.3 96.4 18.8	[95.0; 99.6] [91.8; 98.8] [13.5; 25.2]	154 131 6	88.5 94.2 3.2	[82.8; 92.8] [89.0; 97.5] [1.2; 6.9]	495.3* 685.1* 6.8	[409.2; 599.6] [540.3; 868.7] [5.8; 8.1]

N=number of subjects with available results; n=number of subjects with concentration/titer above the specified cut-off; *Statistically significant difference between HibMenCY-TT and MPSV4 groups

Marchant et al, Pediatr Infect Dis J 29: 48-52, 2010

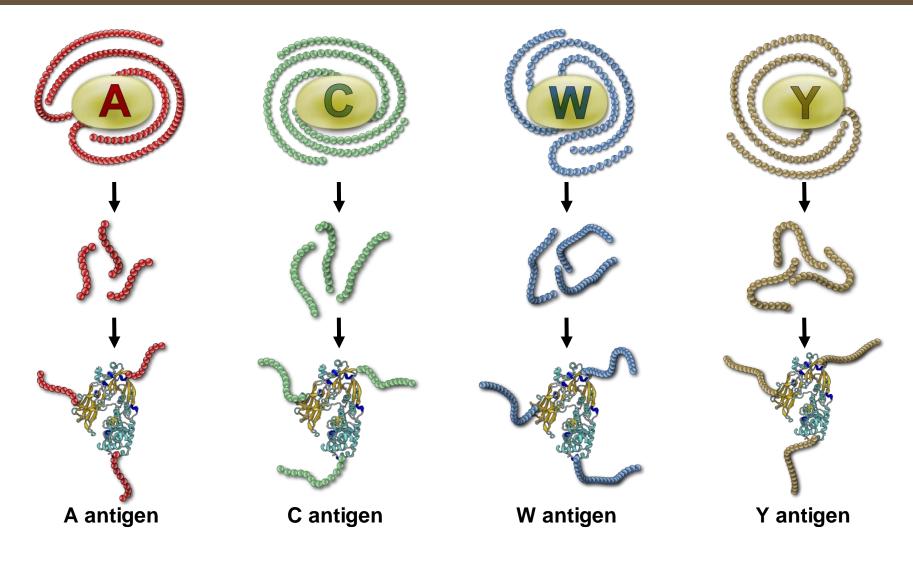
Coverage with tetravalent MenA,C,W,Y conjugated meningococcal vaccines: Today & Tomorrow

Incidence of culture confirmed meningococcal disease, Cases per 100 000 population


Months of age

Years of age

Source: Shepard et al., Pediatr Infect Dis J. 2003 May;22(5):418-22.; Lingappa et al., Vaccine. 2001 Aug 14;19(31):4566-75 Note: No vaccines currently available for serogroup B disease for any age group


Phase III Study in Infants

Fever Rates by Dose for 4CMenB + Routine Vaccines vs. Routine Vaccines Alone vs. MenC + Routine Vaccines

Routine vaccines: Infanrix-Hexa[™]; Prevenar[™].

Meningococcal glycoconjugates

Current Conjugated Meningococcal Vaccines

- Menomune[®], an ACWY polysaccharide vaccine (MPSV4) licensed in 1981¹
- Monovalent MenC, various companies, licensed in various countries
- Menactra[®], an ACWY conjugate vaccine with diphtheria toxoid as the protein carrier, licensed in the United States in 2005⁴
- Menveo[®], an ACWY conjugate vaccine with CRM-197 as the protein carrier, licensed in Europe and in the United States in 2010
- Other approaches
 - Monovalent MenA (MenAfriVac[®])
 - Bivalent MenC-MenY (<u>+</u> Hib)

1. Harrison LH. *Clin Infect Dis.* 2000;30:648-651; 2. CDC. *MMWR Recomm Rep.* 2000;49(RR-7):11-20; 3. Harrison LH. *Clin Microbiol Rev.* 2006;19:142-164; 4. Bilukha OO, et al. *MMWR Recomm Rep.* 2005;54:1-21; 5. CDC. *MMWR Morb Mortal Wkly Rep.* 2007;56:794-795.