# Lessons Learned from Adverse Events and Assessment of Causal Relationships

## Neal A. Halsey Johns Hopkins University



#### Introduction of IPV U.S. 1955

 April 14: Francis Field Trial Results Announced by March of Dimes

- April 15, Nationwide Immunization
- April 24, First cases of paralysis



Poliomyelitis Among Children Inoculated in School Clinics April 17 - May 14, 1955





Source: Nathanson. Am J Hyg 1963;78:46.

#### **Cutter-associated Polio Cases (260)**



#### Vaccinated Cases

#### Effects of Virus-Formaldehyde Contact Upon Rate of Destruction of Virus Infectivity



#### **The Cutter Incident**

- Lessons:
  - Scaling up creates new problems
  - Quality control every change
  - Need epidemiologic postlicensure safety assessment





THE **Cutter Incident** 

Paul Offit, M.D.

#### EZ Measles Vaccine Trial, Mexico City Seroconversion Rates, 6 Month-olds





#### **1990: High titer vaccine recommended by WHO**

Source: Markowitz. NEJM 1990;322(9):580.

#### Survival Curves From 9 Months of Age by Sex for Recipients of the Schwarz Standard and High-titer Measles vaccine. Children Born Between February 1987 and April 1990 in Niakhar, Senegal



|                              | Mortality Following High<br>Country and 1990 Infan | Titer* Vaccines by t Mortality Rates                           |
|------------------------------|----------------------------------------------------|----------------------------------------------------------------|
|                              | <b>Increased Mortality</b>                         | IMR                                                            |
|                              | Guinea Bissau                                      | 122                                                            |
|                              | Senegal                                            | 78                                                             |
|                              | Haiti                                              | 110                                                            |
|                              | No Increased Mortality                             | y                                                              |
|                              | Mexico                                             | 29                                                             |
|                              | Peru                                               | 56                                                             |
| Institute for Vaccine Safety | Philippines                                        | 52                                                             |
|                              | U.S.                                               | 8                                                              |
|                              | * <u>≥</u> 10 <sup>5.0</sup> TCID <sub>50</sub>    | Halsey PIDJ; 12:462-5, 1993<br>Libman et al. PIDJ;21:112, 2002 |



#### **High Titer Measles Vaccines**

#### Lessons:

- Dose of measles vaccine importantprobably specific to measles
- Safety in one population  $\searrow$  safety in all
- Unfortunate generalization by some to vaccines "overwhelm the immune system"



## Randomized Trial of Standard Titer Measles Vaccine on Mortality



22% reduction (not significant Less than noted in multiple observational studies

**Aaby et al.** BMJ 2010;341: c6495

#### Observational Studies Suggest Reductions in Mortality Associated With BCG Vaccine

| General population             | Age (months)*   |  |
|--------------------------------|-----------------|--|
| Benin <sup>†,§</sup>           | 4–35            |  |
| Guinea-Bissau <sup>1</sup> ,#  | 0–6             |  |
| Guinea-Bissau**, <sup>††</sup> | 0–8             |  |
| Malawi**,§§                    | 7 days–9 months |  |
| Guinea-Bissau**,1              | 0–6             |  |
| Guinea-Bissau**,##             | 1–8             |  |

School of Public He



Roth et al Expert Rev Vaccines. 2006 Apr;5(2):277-93.

# Randomized Trial of BCG Early in Life on Mortality: Guinea-Bissau

Expected reduction 25%,

WHO review of nonspecific effects pending

Johns Hopkins Bloomberg School of Public Health



#### Aaby et al. JID 2011;204:245–52

# **Causality Assessment**

Institute for Vaccine Safety

What do we mean when we say a vaccine "causes" an adverse event?

- Population: The vaccine increases the risk of the event.
- Individual: The vaccine was a factor in the patient developing the adverse event.



Coggan and Martyn Lancet 2005; 365: 1434–37

#### **Types of "Causal Factors"**

- "sufficient"
- "necessary"
- "necessary and sufficient"
- "contributing"
- "attributable"

For most adverse events known to be caused by vaccines, the vaccine is a contributing cause.



Rothman AJPH 2005; 95:s91 Coggan and Martyn Lancet 2005; 365: 1434–37

#### "sufficient cause"

• "a set of minimal conditions and events that inevitably produce disease"



Rothman AJPH 2005; 95:s91

#### Wild-type Measles virus is a sufficient cause of measles

- Almost all susceptible develop the disease
- Host contributing factors affecting severity:
  - Age, gender?
  - Exposure intensity (dose)
  - Nutritional status (vitamin A deficiency)
  - Immunocompromised
  - Secondary bacterial infections



#### **Bradford Hill Causality Criteria**

- Strength
   Consistency
- 3. Specificity
- 4. Temporality
- 5. Biologic gradient

- 6. Plausibility
- 7. Coherence
- 8. Experimental evidence
- 9. Analogy

K. Rothman. Causation and Causal Inference. In: Rothman KR and Greenland S, Modern Epidemiology. Lippincott; 1998



# Usual criteria for determining a causal relationship between vaccines and adverse events

Epidemiologic Studies: Evidence of increased risk in vaccine recipients vs controls,

or

# Definitive laboratory tests linking disease to vaccine component



A few exceptions





#### Investigating Causal Relationships Randomized Placebo-Controlled Double Blind Trials





#### Prospective Randomized Trials for Detection of Adverse Events

- Designed for detection of reactions:
  - Common
  - Acute
- Not generally designed to detect:
  - Uncommon
  - Vague onset
  - Delayed onset



#### **Post-licensure Safety Studies**

- 1. Passive surveillance
- 2. Active surveillance
- 3. Individual case assessment
- 4. Special studies



#### Retrospective or Non-concurrent Cohort Studies

- Defined population.
- Identify vaccinated and unvaccinated prior to risk period.
- Identify all cases in defined time period.
- Compare rates of disease in vaccinated and unvaccinated.



#### Investigating Causal Relationships Retrospective or Non-concurrent Cohort Studies



Johns Hopkins Bloom School of Public Heal

#### Relative Risk of Sudden Infant Death Syndrome by Day after DTP: Tennessee



Healthy Vaccinee Effect: children with illnesses not vaccinated



DTP does not increase the risk of SIDS

Griffin et al. NEJM 1988;319:618-23

#### Investigating Causal Relationships Case-Control Studies



School of Public He

# OddsRatioa/badc/dbc

Potential Problems:

- Not randomized
- Selection bias?
- Matching?

#### **Bell's Palsy**





www.elib.gov.ph/edatabase

# Switzerland: Odds Ratios for Receipt of Vaccines <91 Days Prior to Bell's Palsy

|                                        | Case Patients (N=250) | Controls<br>(N=722) | Adjusted Odds<br>Ratio |
|----------------------------------------|-----------------------|---------------------|------------------------|
| Vaccine                                |                       |                     | (95%CI)                |
| Intranasal<br>inactivated<br>influenza | 63<br>(25.2%)         | 7<br>(1.0%)         | 84.0<br>(20.1-351.9)   |
| Parenteral<br>inactivated<br>influenza | 10<br>(4.0%)          | 41<br>(5.7%)        | 1.1<br>(0.6-2.0)       |



Mutsch M, et al. NEJM 2004;350:896.

#### **Vaccine Only Studies**



**Potential Problems:** 

- Selection bias?
- Need to include all cases



# **Vaccine Only Studies**



Compare the incidence of disease in different time periods after receiving vaccines

Institute for Vaccine Safety

#### **Case Only Studies**



School of Public Health

Potential Problems:

- Selection bias?
- Need to include all cases

#### **Ecologic Studies**



#### Core and Atypical Autism Cases Under 60 Months of Age and Fitted Trends by Year of Birth 1979-92: UK



#### **Ecologic Data Used to Demonstrate Effectiveness of Licensed Vaccines**



#### **Case Reports**





## Case Reports of Individuals With AEFI Based on Temporal Relationships Only

# Reproductive Immunology

#### Original Article

#### Human Papilloma Virus Vaccine and Primary Ovarian Failure: Another Facet of the Autoimmune/Inflammatory Syndrome Induced by Adjuvants

Serena Colafrancesco<sup>1,2</sup>, Carlo Perricone<sup>1,2</sup>, Lucija Tomljenovic<sup>1,3</sup> and Yehuda Shoenfeld 1,4,\*

Article first published online: 31 JUL 2013

DOI: 10.1111/aji.12151

© 2013 John Wiley & Sons Ltd

Issue



American Journal of Reproductive Immunology

Volume 70, Issue 4, pages 309–316, October 2013

Limitations in the Use of Passive Reports for Causality Assessment

- 1. Incomplete data
- 2. Diagnoses not verified
- 3. Usually temporal association only
- 4. Faulty numerators and denominators
  - Reporting bias
- 5. Cannot be used for calculating true risks
- 6. Primarily hypothesis generating



MMWR. 2003 Feb 14;52(06):113 Pediatr Infect Dis J. 2004 Apr;23(4):287-94.

#### Causality Assessment from Individual Case Reports

- Causality established (usually):
  - Isolation of live vaccine agent in normally sterile body fluid.
    - Yellow fever vaccine virus in liver.
    - Polio vaccine (OPV) virus in CSF.
    - Measles vaccine virus in lung of child with leukemia.



Sem in Ped Infect Dis 2002 July;13(3):205-14

#### Causality Assessment from Individual Case Reports

- Causality established (usually):
  - Isolation of live vaccine agent in normally sterile body fluid.
    - Yellow fever vaccine virus in liver.
    - Polio vaccine (OPV) virus in CSF.
    - Measles vaccine virus in lung of child with leukemia.

- Rule out wild type virus (genetic sequencing)



Sem in Ped Infect Dis 2002 July;13(3):205-14

#### Causality Assessment from Individual Case Reports

- Causality <u>not</u> established:
  - Antigen detection or PCR without sequencing.
    - False positives
    - Contamination
    - Coincidental infection



# Measles Virus does not Persist in Children with Autism Spectrum Disorder

|                                              | ASD   | Controls |  |  |
|----------------------------------------------|-------|----------|--|--|
| Uhlmann (intestine) 2002                     | 75/91 | 5/70     |  |  |
| Martin (intestine) 2002                      | 62/68 | 4/39     |  |  |
| Kawashima (PBMC) 2000                        | 3/9   | 0/8      |  |  |
| No sequencing of amplification products      |       |          |  |  |
| D'Souza (PBMC) 2006                          |       |          |  |  |
| <ul> <li>Uhlmann assay*</li> </ul>           | 0/38  | 0/15-18  |  |  |
| <ul> <li>Kawashima assay*</li> </ul>         | 0/23  | 0/16     |  |  |
| <ul> <li>Probe-based Fusion Assay</li> </ul> | 0/54  | 0/34     |  |  |

Institute for Vaccine Safety

#### \* PCR products not measles - host origin

D'Souza Y. Pediatrics 2006;118(4):1665.

Causal Associations Usually Cannot by Determined from Passive Reports of Individual Cases Without Isolation of Vaccine Agent

Possible exceptions:

- 1. Injection site reactions
- 2. Immediate hypersensitivity reactions
- 3. Repeat challenge(no clear criteria)
- 4. Disorders where general causality has already been established and alternative causes ruled out



#### Immediate Hypersensitivity Reactions

- Pathogenesis known
- Short interval from vaccine to reaction
- Unlikely for other exposures
- Skin testing with vaccine components



#### Disorders Known to Have a Causal Association with Vaccines

- Febrile seizure 7 or 10 days after measles vaccine:
  - In the time window of increased rate of fever
  - No specific test to determine cause



## Percent of Children with Fever Following Edmonston B Measles Vaccine (1963)



Adapted from Martin CM. Am J of Dis of Children 1963;106:270.

#### Investigating Individual Case Reports

No Known Causal Association

No Specific Laboratory Test



## Case Reports and Temporal Associations for Diseases of Unknown Etiology

 The number of cases does not matter - 1, 10, 100, or 1,000

 Need rates: vaccinated vs unvaccinated to establish causal association



#### Post-licensure Investigation of Individual Case Reports of AEFI

Institute for Vaccine Safety

# CISA Causality Assessment Objectives

- 1. To educate providers on the steps involved in assessing causality
- 2. To standardize the approach for assessing causality in individual patients
- 3. To improve the understanding of terms used to describe causal relationships

## Confusion from Use of Same Terms for Diagnostic Certainty and Causality

#### Certainty of Diagnosis

- Definite
- Probable
- Possible
- Unlikely
- Unknown

#### Causal Relationship

- Definite/certain
- Probable
- Possil
- Unlikely
- Other causeUnclassifiable











#### **Algorithm Advantages**

- 1. Visual
- 2. Standardized
- 3. Transparent
- 4. Tracking assessments
- 5. Revise assessments as new data become available



# WHO Causality Assessment Tool

http://www.who.int/iris/bitstream/10665/80670/1/9789241505338\_eng.pdf



Assessment of causality of individual adverse events following immunization (AEFI): A WHO tool for global use

Alberto E. Tozzi<sup>a,\*</sup>, Edwin J. Asturias<sup>b</sup>, Madhava Ram Balakrishnan<sup>c</sup>, Neal A. Halsey<sup>d</sup>, Barbara Law<sup>e</sup>, Patrick L.F. Zuber<sup>c</sup>

WHO/HIS/EMP/QSS. MARCH 2013



Tozzi et al. Vaccine 2013;31(44):5041-6

#### **Causality Assessment Steps**



# Eligibility

#### Fig. 1. Causality assessment – Eligibility





## 3. Algorithm

#### Step 3: Algorithm

#### Review all steps and check ✓ all the appropriate boxes



#### 4. Classification

Step 4: Classification

#### Check ✓ all boxes that apply



\*B1: This is a potential signal and maybe considered for investigation

#### Conclusions

- 1. Causality assessment is complex
- 2. Poor understanding among health care providers and the general public
- 3. Need for standardization and improved education
  - algorithm approach will help
- 4. Demand good science

