Quantitative Review of Vaccine Policy: Integrating Science, Economics for Public Health

ADVAC Veyrier du Lac May 2014

Mark A Miller Fogarty International Center National Institutes of Health

Objectives

- Integration of epidemiology and economic inputs and outputs
 - Justification for investments for prevention and insurance policy
- Assessment of <u>value of health outcomes and</u> biological/ecological change
 - individual incentives
 - Justify public programs on population level
- Present options of strategies/health outcomes at various costs to systematically evaluate choices
- Evaluate uncertainty; value of specific research
- It's not just cost-effectiveness!
 - Limited resources, incentives, perception of values, business decisions, strategies

Whose perspective?

Different accounting of costs and benefits

Simpler Times for Vaccine "Advocacy"

More Complex Today

- Does incidence of SP specific serotypes, rotavirus, meningitis B or HPV justify vaccine intervention?
 - At what cost?
 - Relevant health outcomes (serotype replacement?)
- What is minimal level of effectiveness to justify vaccine use?
 - Sub-optimal performance--rotavirus, malaria
 - Influenza control
- What is value of "eradication", "elimination" vs expanded "control"
 Poliomyelitis? Measles? Rubella Real costs to <u>sustain eradication</u>
- Decision analysis for R&D investments to develop specific vaccines trade-off characteristics/attributes (performance, cost, ease of use)
- Economic evaluation not necessarily to provide answers but can identify critical inputs (research) for policy formulation

Systems Approach to Prevention Effectiveness

No. Cases Prevented = *f*(*Disease Burden, Efficacy, Coverage*)

Surveillance Literature technical political economic

RCT

Post Licensure

Changing incidence with control

technical = f (operational factors, program feasibility, human resources)

political = f (perception of disease burden, community)

community = f (trust, education, coercion, mandate) *acceptance*

economic = f (financial commitment, opportunity cost, Willingness to pay)

All change with respect to time

Changing value perceptions over time (dynamic systems)

Data Matrix

Data Types (determinants of disease and control)

Biology Genetics Immunology Ecology **Demographics** Age structure Population density

Environmental Socio-behavioral Logistical

Water access Sanitation Political Community Economic Human resources Infrastructure Access

Basic Model Schematic S I R Models

Transmission rates; incubation periods

What are Relevant Outcomes to Value

Outcome Metric				
Cases	Cases that occur or are prevented by an intervention. May be stratified by severity/sequelae			
Deaths	Easily quantified but defies economic valuation. CEA often			
Years of Potential Life Lost	Refines the death metric to also account for life expectancies and age of disease acquisition			
Quality-adjusted life-years or Disability-adjusted life-years or other	Further refines by incorporating morbidity states and time with condition—useful for chronic disease outcomes			
Outbreaks	Disruption of societal functions			

Vaccine Intervention Accounting

- Fixed administration
 - Training
 - Personnel
 - Equipment
- Recurrent
 - Operating costs
 - Vaccine and wastage
 - Syringe and needle
- Adverse events (Real or perceived)

Need to look at marginal cost to existing infrastructure

OF HEADTH

Who pays, who benefits?

Disease Costs

Microeconomic

- Direct
 - Pharmaceuticals, diagnostic, provider, etc
 - Chronic disability (poliomyelitis, hepatitis, etc.)
- Indirect
 - Lost wages (patient and care-givers)
- Intangible
 - Social
 - Death
- Macro-economic
 - Example: tourism, agriculture
- Discounting (adjustment for time)

Quantify the Value of Prevention

- Cost analysis (C_i-C_0)
- Cost Effectiveness (C_i-C₀)/ΔHealth Outcome
- Cost-Utility (C_i-C₀)/△Common Outcome
- Cost-Benefit (C B or B:C ratio)
- **Decision Analysis** What if??
 - Alternative strategies/controls
- Sensitivity Analysis How robust?
 - Highlight research agenda

Example 1 Vaccine Introduction Endemic Disease

Impact of *Haemophilus Influenzae* (HiB) Vaccine

Hib Data and Output Bolivia (Prevaccine era 1997)

Demographics			Epidemiologic Assumptions			
per cap GDP	births	<5 mortality	Coverage	Meningitis	Pneumonia	
\$760	257000	91	88%	30 (per 100.000 d	150 children <5)	
Economic	Assumption	s (unit costs	5)	u ,	,	
vaccine	admin		outpatient	hosp. Day		
\$2.30	\$0.55		\$11	\$45		
Output: Es	stimated dise	ease burder	Hospital			
Meningitis	Pneumonia		Days	Hib Deaths		
378	1892		9935	550		
Disease Pr	evented					
Meningitis	Pneumonia		Deaths	Life Years		
316	1582		460	28 K		
Economic	Assessment		Treatment	Cost per	% of per	
Vaccine	Admin	Total	savings	Year Life	capita GDP	
\$1.6 M	\$0.3 M	\$1.9 M	\$.4M	\$55	7.2%	

Simulation Results

1,000 Trials

Probability of value for each parameter given uncertainty of multiple variables

Example 2

Decision Analysis

Measles control strategies (1, 2 doses, campaigns?)

Analyses for Chhattisgarh (India) using historic vaccination data

Total results for the period 1981-2010 (last available historic record at 2007)

	Cases
0-12 months	29,818
1-4 years	456,010
5-9 years	1,090,491
10-14 years	281,015
15-19 years	118,928
'	

Deaths
716
5,472
6,543
0
0

	Costs Vaccination
1st	\$2,387,134
2nd	\$ 0
Campaign	\$0
Total	\$2,387,134

Deaths

Cases

Susceptibles

Various outcomes of immunology profiles and costs for different strategies

What is optimal??

1,976,263

Example 3 Policy Priorities

Evaluations to Prioritize Vaccine Options

	Extending coverage			Introduction of new antigens, combo, boosters			
	Measles	Нер В	IPV	HPV	Men	DTPac	SP
Disease Burden							
Vaccine Program Costs							
Prevented Disease							
Treatment Savings							
Cost Effectiveness							

Although many vaccines have been considered costeffective, why has there been a delay in their adoption into routine vaccination schedules in many countries?

Example 4 Demand/Supply Prediction

Estimating the probability of national vaccine uptake (Hepatitis B, Hib)

Number of Countries Adopting Hepatitis B Vaccine into National Immunization Programs

Countries using hepatitis B vaccine in routine vaccination schedule

Factors associated with HB vaccine uptake into national schedules

Variable	Odds	95% Cor	nfidence
	Ratio	inter	vals
Treatment Cost	5.0	2.3	11.0
Years Life Lost (per capita)	6.9	2.9	16.1
Coverage	55.1	10.4	292.6
Per-capita GDP/ Vaccine cost	39.7	6.5	241.2

Highest quartile relative to lowest

Miller MA, Flanders WD. A model to estimate the probability of hepatitis B- and Haemophilus influenzae type b-vaccine uptake into national vaccination programs. Vaccine. 2000

Estimated probability of hepatitis B vaccine uptake into national schedules

Estimated probability of Hib adoption

Estimated probability of Hib adoption and current actual use

Estimated probability of Hib adoption at 10% current cost

Factors to influence (short term)

Factor Coverage

Vaccine cost to public sector

Audience Vaccine program, MOH, MOF, Communities, Management, Operational Research

Manufacturers Partner agencies

Perception of Disease Burden MOH, MOF, Academia

Example 5 Influenza Pandemic

Planning of Potential Strategies

Objectives

- What are relevant health outcome metrics?
 - Mortality, Years of Life Lost, Labor disruption
- Who is at risk?
 Epidemics versus Pandemics
- Who benefits directly
 - Differential efficacy of vaccine
- Impact per dose
- Optimization of indirect benefits

IMPLEMENTATION PLAN

HOMELAND SECURITY COUNCIL

Excess seasonal mortality by age group for average of A/H3N2 epidemics

Proportion of mortality in persons < 65 years in Past Influenza Pandemics

Simonsen L et al, Pandemic versus Epidemic Influenza Mortality: A Pattern of Changing Age Distribution JID, 1998

Excess seasonal mortality by age group for average of A/H3N2 epidemics and 1968 pandemic

Excess seasonal Years of Life Lost by age group for average of A/H3N2 epidemics and 1968 pandemic

Miller MA et al. Prioritization of Influenza Pandemic Vaccination to Minimize Years of Life Lost. JID. 2008.

Influenza Season	Age Group	Prevented Deaths per 100,000 vaccine doses	Prevented YLL per 10,000 vaccine doses
1918	Under 45	394–507	2,246 - 2,888
	45-64	147 - 189	694 - 893
	65+	26 - 80	33 - 102
1957	Under 45	4.5 - 5.8	25 - 32
	45-64	32 - 41	92 - 118
	65+	54 - 167	59 - 184
1968	Under 45	2.9 - 3.8	16 – 21
	45-64	29 - 37	77 – 99
	65+	26 - 80	28 - 89
A(H3N2) epidemic	Under 45	1.0 – 1.3	5.3 – 6.8
	45-64	4.6 – 5.9	12 - 15
	65+	20 – 62	17 - 52

Pottential Prevented Deaths/YLL of Various Targeted Age Groups in Past Pandemics

Miller MA et al. Prioritization of Influenza Pandemic Vaccination to Minimize Years of Life Lost. JID. 2008.

Example 6 Pandemic Response

H1N1 in Mexico

The NEW ENGLAND JOURNAL of MEDICINE

May, 2009

ORIGINAL ARTICLE

Severe Respiratory Disease Concurrent with the Circulation of H1N1 Influenza

Gerardo Chowell, Ph.D., Stefano M. Bertozzi, M.D., Ph.D., M. Arantxa Colchero, Ph.D., Hugo Lopez-Gatell, M.D., Ph.D., Celia Alpuche-Aranda, M.D., Ph.D., Mauricio Hernandez, M.D., Ph.D., and Mark A. Miller, M.D. N Engl J Med 2009; 361:674-679

Containment of outbreak? Mitigate early wave?

Would you even want to vaccinate? Antiviral use

Who do you vaccinate?

Allocation of resources in real time, costs of each program

Impact of pre-emptive vaccination on transmission rate

0-5 year olds

School age, Young adults, first

Chowell G et al. Adaptive Vaccination Strategies to Mitigate Pandemic Influenza: Mexico as a Case Study. PLoS one, 2009:

Example 7 Morbidity Outcomes

Vaccines against Growth and Cognition Faltering?

The MAL-ED project

Stunting Prevalence by severity, 0-24 months

Brazil Group G

Tanzania

Age (months)

Moderate stunting (orange) and severe (blue)

Length and Growth Curves with Co-morbidities

Length and Growth Curves by Enteric Pathogen

MA

Conclusion

- Vaccines are Public Health, PH is Politics which require economic analyses to make resource allocation decisions
 - Public health marketing and science based decisions to recipients, decision makers in public + private sector
- Modeling tools that integrate epidemiology and economics can aid to evaluate value of vaccines (direct and indirect effects), decide amongst strategies, characteristics of ideal vaccines, operational/financial needs, market opportunities
- Policy analysis aids in the formulation of directed research to decrease uncertainty
- Analyses are best conducted using local epidemiologic and economic assumptions for outcomes relevant to local policy-makers