

Immunisations in the immunocompromised

Prof. Claire-Anne Siegrist

WHO Collaborating Center for Vaccine Immunology Medical Faculty and University Hospitals of Geneva Switzerland

• Lack of demonstration of vaccine efficacy (- sample size)

Delayed / limited demonstration of immunogenicity

 ← exclusion from licensing trials (higher risks, small market)
 → mostly investigator-based clinical trials
 ↔ off-label indications !

 Perception that immunosuppression will prevent the induction of effective vaccine-induced responses...

in the immunocompromised

Underestimated benefits

UNIVFRSITÉ

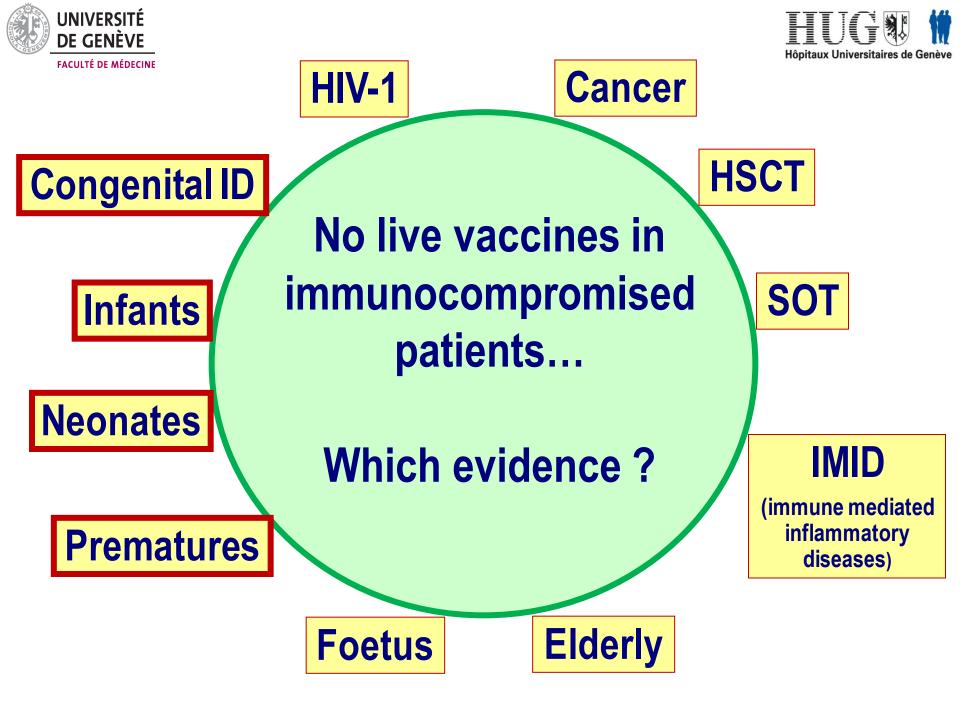
DE GENÈVE

FACULTÉ DE MÉDECINE

Fears of severe adverse events!

Vaccine-associated risks

Official guidelines: NO LIVE VACCINE as soon as immunodeficiency is suspected !


2013 IDSA Clinical Practice Guideline for Vaccination of the Immunocompromised Host

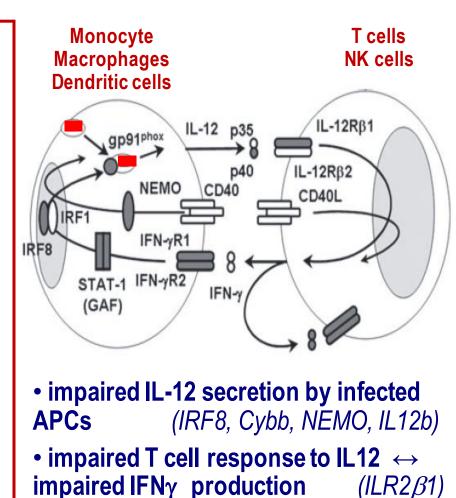
Clinical Infectious Diseases 2014;58(3):309–18

Safety of oral polio vaccine in SCID patients

Risks of VAPP in patients with agammaglobulinemia

- Relative risk difficult to estimate, mostly based on case reports and estimations (↑ risks from 1/700'000 to 1/7'000 ?)
- Main risk = persistent viral excretion in stools
 - no complications in 6/116 SCID patients Stephan J. Pediatr. 1993 :
 - persistent (up to 22 years) but asymptomatic excretion

McLennan C., Lancet 2004


- Search for poliovirus carriers among people with primary immune deficiency diseases (United States, Mexico, Brazil, UK): none found in 2004 (Halsey N, Bull WHO 2004), now ≈ 40 cases
 - Not a major threat for polio eradication...

DE GENÈVE FACULTÉ DE MÉDECINE BCG in patients with congenital ID: mendelian susceptibility to mycobacterial disease

- BCG vaccine in patients with severe congenital immune deficiency (SCID):
- 1993: 33% (10/28) BCG infection, 80% disseminated disease, 3 † (Stephan et al., J. Pediatr. 1993)
- Numerous similar reports \rightarrow identification of mutations in autosomal genes involved in IL-12/23–dependent, IFN- γ – mediated immunity.

(review: Bustamante J, Ann N Y Acad Sci. 2011)

• impaired responses to IFN-γ by APCs / T cells (IFNγR1/R2, STAT-1)

Risks of rotavirus vaccines in infants with severe combined immune deficiency

N Engl J Med 2010;362:314-9.

Vaccine-Acquired Rotavirus in Infants with Severe Combined Immunodeficiency

Niraj C. Patel, M.D., Paula M. Hertel, M.D., Mary K. Estes, Ph.D., Maite de la Morena, M.D., Ann M. Petru, M.D., Lenora M. Noroski, M.D., Paula A. Revell, Ph.D., I. Celine Hanson, M.D., Mary E. Paul, M.D., Howard M. Rosenblatt, M.D., and Stuart L. Abramson, M.D., Ph.D.

• 3 infants with severe and chronic gastroenteritis after Rotateq[®]

rotavirus vaccine strain (PCR on stool samples)

• \rightarrow diagnostic of congenital immune deficiency (ADA deficiency, IL2R γ , RAG1)

DE GENÈVE Rotavirus are safe in preterm infants... but rarely administered !

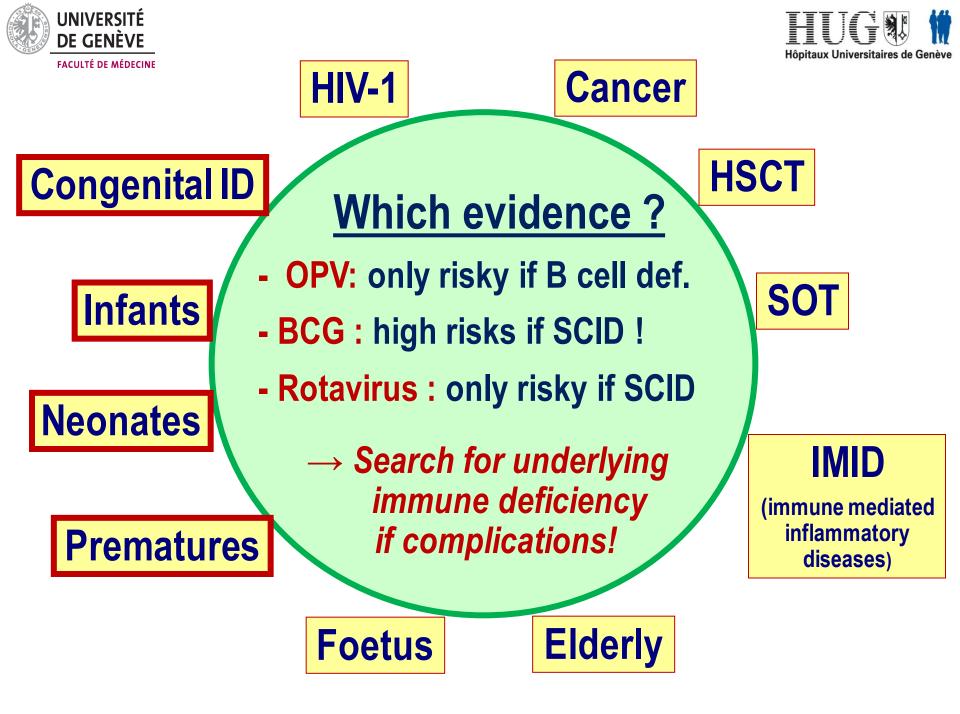
- Preterm infants at higher risks of hospitalization for rotavirus
- RV vaccines are safe and recommended in preterm infants (Rotateq: Goveia MG, PIDJ 2007; Rotarix: Omenaca F, PIDJ 2012)

But rotavirus vaccines are rarely given to preterm infants!

- 63% (135 of 213) of VLBW infants did not receive RVV before NICU discharge Stumpf KA Pediatrics 2013

ROTAVITUS are safe in preterm infants... but rarely administered !

- Preterm infants at higher risks of hospitalization for rotavirus
- RV vaccines are safe and recommended in preterm infants (Rotateq: Goveia MG, PIDJ 2007; Rotarix: Omenaca F, PIDJ 2012)


But rotavirus vaccines are rarely given to preterm infants!

- 63% (135 of 213) of VLBW infants did not receive RVV before NICU discharge Stumpf KA Pediatrics 2013

↔ guidelines recommend to only immunize after hospital discharge, by fear of nosocomial transmission (ACIP 2009)

- some infants are too young (<42 days), others are too old !
- documented viral excretion (Rotateq[®] 5%, Rotarix[®] 25%) and a few case reports of asymptomatic transmission to siblings

Is the potential vaccine risk worth the risk of disease?

Risks of BCG vaccine in HIV infected patients

BCG vaccine in HIV-infected patients: Enhanced risks of disseminated disease - at time of CD4 depletion and AIDS

Moss WJ, WHO Bulletin 2003;81:61

Table 5. Adverse events associated with BCG vaccination in children infected with human immunodeficiency virus (HIV)

Author (year of publication) ^a	Country	Study population	Adverse events ^b
Blanche (1986)	France	18 HIV-infected	Disseminated BCG infection in 3 (17%)
Carswell (1987)	Uganda	54 children born to HIV-infected women	No complications
Bregere (1988)	France	67 HIV-infected	BCG lymphadenitis in 7 (10%)
Houde (1988)	Canada	1 HIV-infected	Disseminated BCG infection in a 2-month-old girl
Ninane (1988)	Belgium	1 HIV-infected	Disseminated BCG infection in a 4-month-old boy from Zaire
Hira (1989)	Zambia	42 HIV-infected children	BCG lymphadenitis in 1 (3%)
ten Dam (1990)	Switzerland	1 HIV-infected	Disseminated BCG infection in an 8-month-old girl from Argentina
Lallemant (1991)	Congo	21 HIV-infected	BCG lymphadenitis in 5 (24%)
MMWR (1991)	Rwanda	37 HIV-infected	BCG lymphadenitis in 2 (5%)
Green (1992)	Zaire	21 HIV-infected	No complications
Ryder (1993)	Zaire	48 HIV-infected 640 HIV-uninfected	Lymphadenitis in 5% HIV-infected and 3.5% HIV-uninfected Fistulae in 5% HIV-infected and 6 to 8% HIV-uninfected
Besnard (1993)	France	68 HIV-infected	4 with BCG lymphadenitis, 3 with fistula, 2 with disseminated BCG (13%)
O'Brien (1995)	Haiti	13 HIV-infected	BCG lymphadenitis, ulceration or abscess in 4 (31%); double dose of BCG
Edwards (1996)	USA	1 HIV-infected	BCG bacteraemia in a 3-year-old HIV-infected Brazilian girl
Sharp (1999)	Australia	1 HIV-infected	BCG lymphadenitis
Thaithumyanon (2000)	Thailand	26 HIV-infected	No complications

WHO GACVS 2007: No BCG if known HIV-1 infection ! (WER 3,2007,82)

Safety of rotavirus vaccines in HIV infected infants

Rotavirus vaccines appear safe in asymptomatic or midly symptomatic HIV-infected infants

- RCT of rotavirus vaccine in HIV-infected infants (South Africa): Rotarix[®] (3 doses at 6, 10, 14 wks) vs placebo, 100 HIV-infected (WHO stage I or II) south African infants, without HAART at enrolment
- No vaccine-associated SAE, similar all/grade 3 symptoms
- Prolonged shedding in 1 of 100 Steele DA, PIDJ 2011, 30:125

RCT of rotavirus vaccine in HIV-infected infants (Kenya): Rotateq[®] (3 doses at 6, 10, 14 wks) vs placebo, 21 HIV-infected infants, without HAART at enrolment

- No vaccine-associated SAE Laserson KF, Vaccine 2012 A61-A70

Safety of VZV vaccine in HIV infected patients ?

VZV appears safe in HIV patients with CD4 \ge 15% or 200/µL, whether before <u>or</u> after immune reconstitution

- VZV vaccine is safe in children with CD4 T cells > 25% (Levin MJ, J Pediatr 2001; Armenian SH PIDJ 2006)
- VZV vaccine appears safe if CD4 T cells > 15% or \geq 200/ μL
 - Few and small series only:
 - 54 seronegative children
 - 60 children (only 34 seronegative)

(Levin MJ, JID 2006) (Taweesith W, PIDJ 2011)

- VZV vaccine appears effective: chart review ↔ VE 82% (24-99) (Son M, JID 2010)

Varicella vaccine may be used / should be recommended in children with HIV

Safety of measles vaccine in HIV infected patients ?

Measles vaccine:

- safe in children with CD4 > 15%

(Krasinski K, Pediatrics 1988)

- safe in 6-mo-old HIV-infected infants

(Chandwani S JID 2011)

- meta-analysis: numerous studies - safety of measles (MMR) in HIV-infected children (Scott P, S JID 2011)

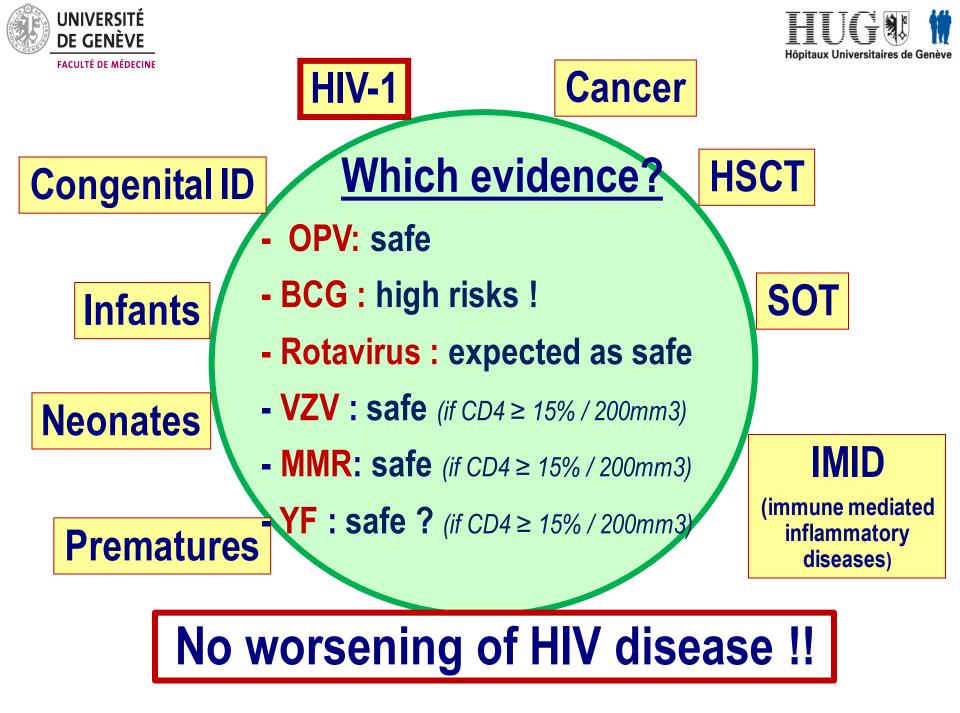
- a few cases (1 lethal) of measles vaccine-strain infection in HIV-infected adults with CD4 counts < $200/\mu L$

(MMWR 1996;45:603; Goon P, Vaccine 2001; Permar SR, JID 2001)

 \leftrightarrow no safety data in patients with CD4⁺ T cells < 200/ μL

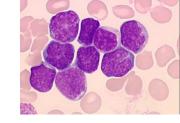
MMR appears safe in HIV patients with CD4 \geq 15% or 200/µL, whether before <u>or</u> after immune reconstitution

Yellow fever vaccine in HIV⁺ patients - safe in asymptomatic young children (WHO)


- 1 case of vaccine meningoencephalitis in an adult patient with low CD4 (Kengsakul J Med Assoc Thai. 2002) → few studies
 - safe in 12 patients with CD4 > 300/ μ L

(Tattevin, AIDS 2004)

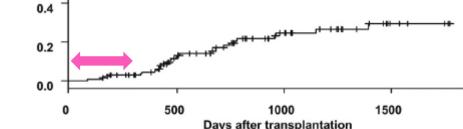
- safe in 102 patients with CD4 > 300µL (Swiss cohort study) (Veit O, Clin Inf Dis 2009)
- safe in 115 patients with CD4 > 200mL (Mali campaign) (Sidhibe M, Trop Med Hyg 2012)
- YFV campaigns in HIV-endemic areas : NO safety signals (WHO GACVS, Wkly Epidemiol Rec. 2011 Jan 28;86(5):38)


Characteristic	Value (n = 102)
Age, median years (IQR)	34.7 (28.1–41.5)
Female sex	48 (47)
Region of origin	
Europe or North America	59 (58)
Sub-Saharan Africa	41 (40)
South America	1 (1)
Other	1 (1)
Mode of HIV transmission	
Heterosexual sexual contact	63 (62)
Male-male sexual contact	22 (22)
Injection drug use	8 (8)
Other or unknown	9 (9)
CDC HIV infection category	
А	71 (70)
В	24 (24)
С	7 (7)
CD4 cell count	
Median cells/mm ³ (range)	512 (368-664)
Missing data	16 (16)
<200 cells/mm ³	7 (7)
200–349 cells/mm ³	13 (13)
350–499 cells/mm ³	22 (22)
>500 cells/mm ³	44 (43)
Nadir CD4 cell count	
Median cells/mm ³ (IQR)	280 (163-469)
Missing data	15 (15)
HIV RNA level <50 copies/mL, n/N (%)	41/84 (48)
Missing data on HIV RNA level	18 (18)
Receipt of triple-drug ART	41 (40)
Chronic hepatitis B or C	19 (19)

Yellow fever vaccine appears safe in HIV-infected patients with CD4 > 15% or 200/µL !

Safety of varicella vaccine in patients with cancer ?

VZV immunization in acute lymphoblastic leukemia:


- AAP 2006: VZV recommended for ALL children in remission ≥ 1 year, if lymphocytes > 700/µL and if chemotherapy withheld for 7 days before/after immunization
- VZV vaccination-induced † in one ALL child (Schrauder A, Lancet 2007)
 who was immunized only 5 months after remission !
- <u>AAP 2009</u>: vaccination <u>ONLY</u> with expert guidance as
 - ↓ community prevalence of VZV (← routine immunization)
 - trisks of serious complications (
 — antiviral therapies).
 20† (0.057%) in review of 35'128 ALL (Caniza MA Ped Blood Cancer 2012)
- Loss of immunity after chemotherapy ! (Bochennek K Vaccine 2014)

Check immunity and consider VZV vaccine if exposure likely !

Safety of VZV vaccine in patients after HSCT ?

 Risks of varicella following hematopoietic stem cell transplant (HSCT) ↔ acyclovir during 12 mo (or IS)

• VZV immunization recommended 24 mo after HSCT (if no GVHD = OFF immunosuppression):

Kawamura K Intl J Inf Dis 2014

- 46 VZV seronegative children with CD4 cell count ≥200/μL, median time since HSCT: 4 years. (Chou CF, Biol Blood Marrow Transplant. 2011)
- 68 HSCT recipients with positive seroresponse and lymphocyte proliferation to tetanus vaccine (Kusmaul SC, Bone Marrow Transplant 2010)
- 110 HSCT adults 24 months after HSCT (Issa NC, Biol Blood Marrow Transplant 2014

Why not immunize after acyclovir waning ? Study needed !

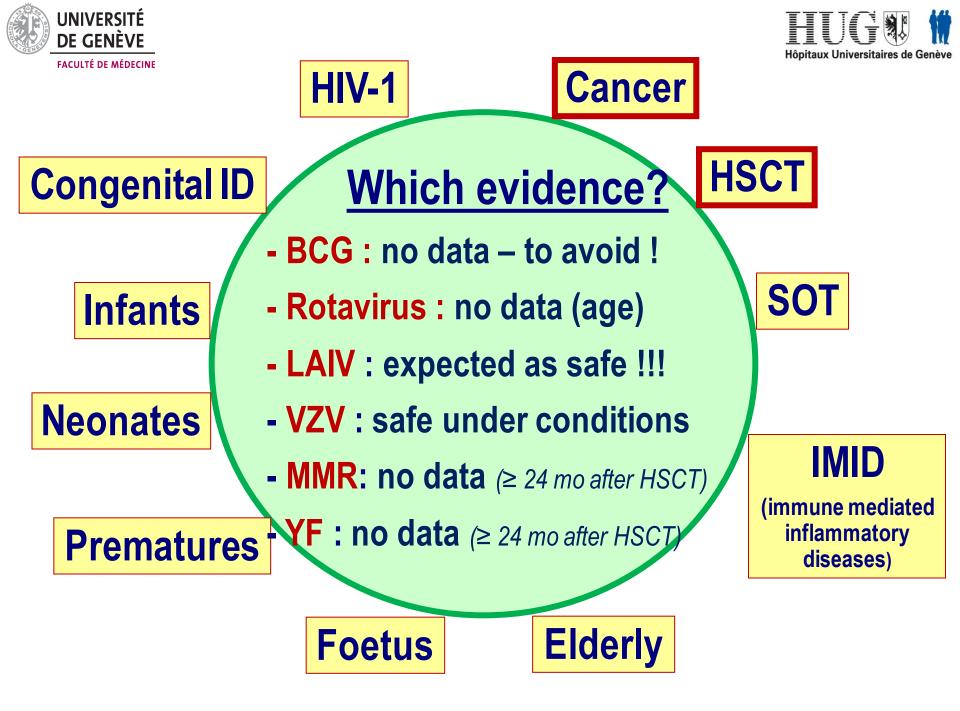
DE GENÈVE FACULTÉ DE MÉDECINE Safety of live attenuated influenza vaccine in the immunocompromised?

Contraindication \leftarrow fear of impaired viral clearance <u>1. Which biological evidence ?</u>

The influenza virus strains in FLUMIST are (a) *cold-adapted* (*ca*) (i.e., they replicate efficiently at 25°C, a temperature that is restrictive for replication of many wild-type influenza viruses); (b) *temperature-sensitive* (*ts*) (i.e., they are restricted in replication at 37°C (Type B strains) or 39°C (Type A strains), temperatures at which many wild-type influenza viruses grow efficiently); and (c) *attenuated* (*att*) (they do not produce classic influenza-like illness in the ferret model of human influenza infection). The cumulative effect of the antigenic properties and the *ca*, *ts*, and *att* phenotypes is that the attenuated vaccine viruses replicate in the nasopharynx and induce protective immunity.

- viral replication occurs only below 37°C
- prevention of viral dissemination is thus controlled by body temperature (nasopharynx) - and not by immunity !
- risks = prolonged upper respiratory tract symptoms (?)

DE GENÈVE FACULTÉ DE MÉDECINE Safety of live attenuated influenza vaccine in the immunocompromised?



<u>2. Which clinical evidence of \uparrow viral shedding?</u>

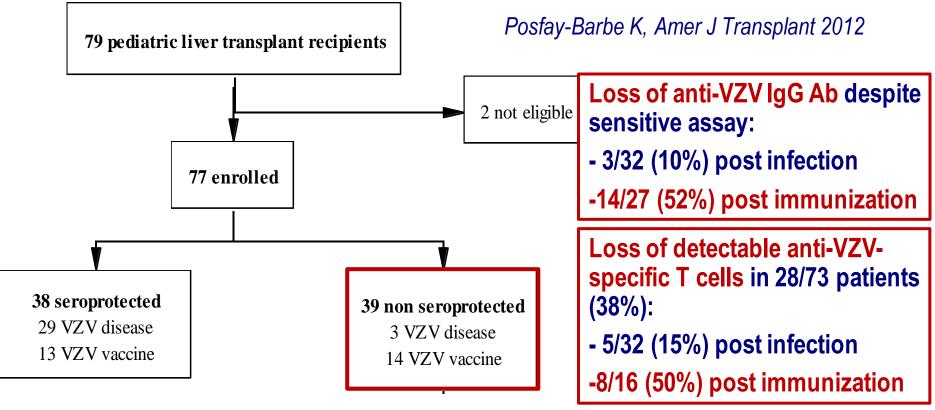
- in children with HIV:
 - 243 children with CD4 ≥ 15% (mean 12 yrs), RCT of LAIV vs TIV
 - No adverse events, similar viral shedding (Levin MJ, Vaccine 2008)
- in children with cancer :
 - 20 children (mean 12.2 yrs) : LAIV vs placebo (Halasa N, Vaccine 2011)
 - \rightarrow more runny nose/nasal congestion; no related SAEs
 - \rightarrow 4/10 LAIV recipients shed vaccine virus, none \geq 7-10 days
 - 55 children (mean 10.2 yrs) : LAIV vs TIV
 - \rightarrow rhinorrhea; no related SAEs
 - \rightarrow 10/28 LAIV recipients shed vaccine virus, none \geq 7 days

LAIV expected as safe and the optimal strategy to prevent influenza in in immunocompromised children !

(Carr S, JID 2011)

Official recommendations for the use of live vaccines in organ transplant recipients

VACCINE	Before T	After T
Varicella	YES	NO !
MMR	YES	NO !
Oral polio	YES	NO !
Typhoid fever	YES	NO !
Yellow fever	YES	NO !
LAIV	YES	NO !


Recommendations ← **presumptions of 1**) sustained efficacy of pre-T immunity and 2) risks of post-T immunization

Presumption 1: persistence of pre-transplant immunity ??

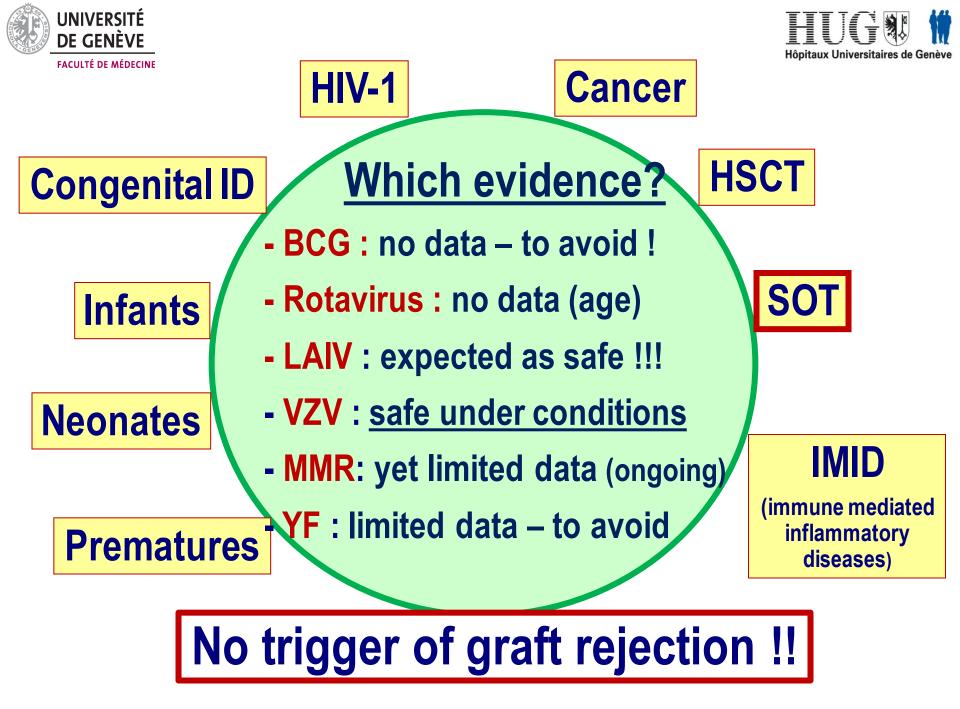
 Waning of vaccine- or infection-induced VZV B and T cell immunity in liver transplanted children

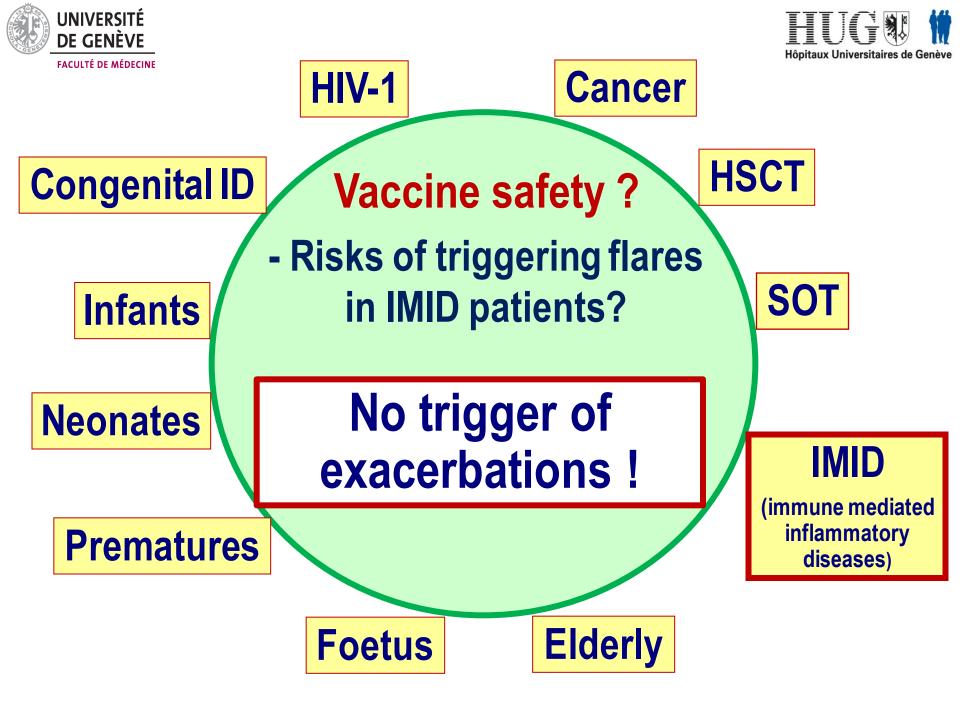
Presumption 2: High risks of post-transplant immunization ?? VZV immunization after liver / intestine transplantation:

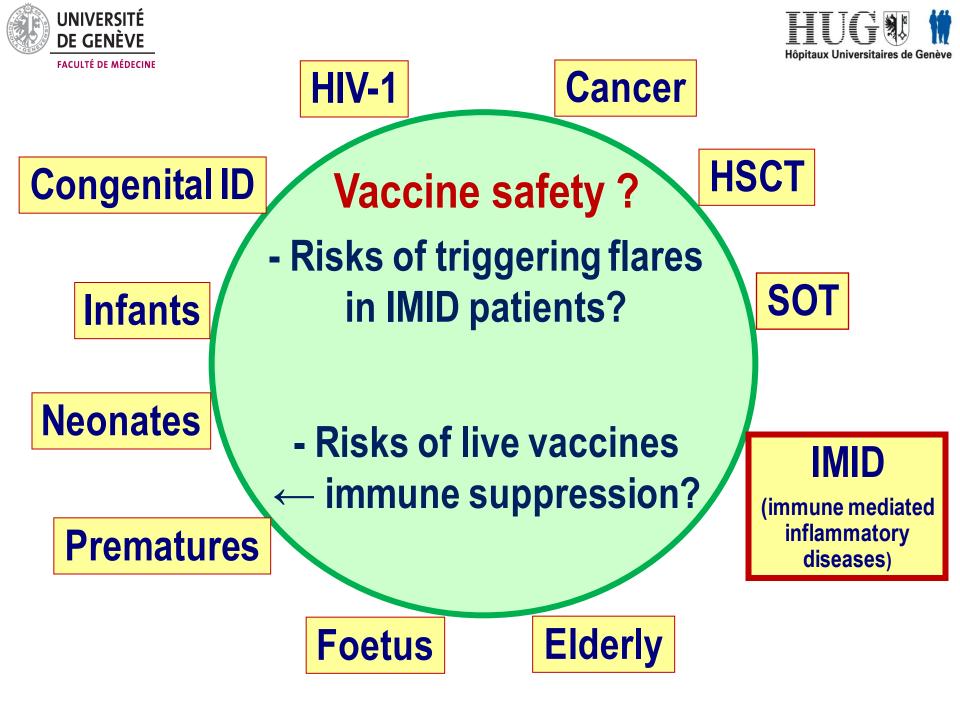
- US: 16 transplant children > 12 mo; > 6-12 mo after T; receiving tacrolismus (14/16, through level < 10ng/ml), cyclosporine A (2/16), prednisone (9/16, max 0.3mg/kg on alternate day).
 - Vaccine rash (3-4 vesicles) in 4/16 (\rightarrow oral acyclovir)
 - Immunogenicity : 87% Weinberg A, Am J Transpl 2006
- Switzerland: 36 seronegative transplant children > 12 mo :
 - Mild and transient local/systemic adverse events, Ø acyclovir
 - No clinical / biological graft rejection
 - 100% seroprotection (2-3 doses), † VZV-specific T cells
 - No breakthrough disease (> 4 yrs)

Posfay-Barbe, Am J Transplant 2012

Yellow fever immunization to solid organ recipients ???


- Brazil: YFV campaigns, questionnaire to all transplant centers
- <u>Retrospective</u> identification of 19 SOT patients inadvertently immunized with YF vaccine despite their immunosuppression


General patient data at the time of yellow fever vaccination (YFV)


	Mean ± SD	Median	Range
Age at the YFV (years)	45.6 ± 13.6	46	11–69
Creatinine (mg/dL)	1.46 ± 0.62	1.25	0.8–3.4
Post-transplant time at YFV (months)	65 ± 83.9	36	3–340
Months from YFV at the time of the survey	45 ± 51	30	3–241

Azevedo LS, Transplant Inf Diseases 2011

No severe adverse event identified, but...

Live vaccines in immunosuppressed IMID patients

Varicella immunization in juvenile rheumatic diseases ?

One single prospective study (Brazil) !

- 25 patients (20 seronegative)
 - MTX: 25, prednisone:13, other:5
 - No severe adverse events
 - 20% with limited VZV rash, i.e. within normal range
 - No IMID exacerbation...

MMR immunization in juvenile rheumatic diseases ?

Retrospective study:

- Heijstek MW, Ann Rheum Dis 2007
- 314 patients (49 MTX) : no disease exacerbation nor complication
- Prospective study :
 - 15 patients (MTX +- ethanercept), revaccination after 2 MMR
 - No safety issue

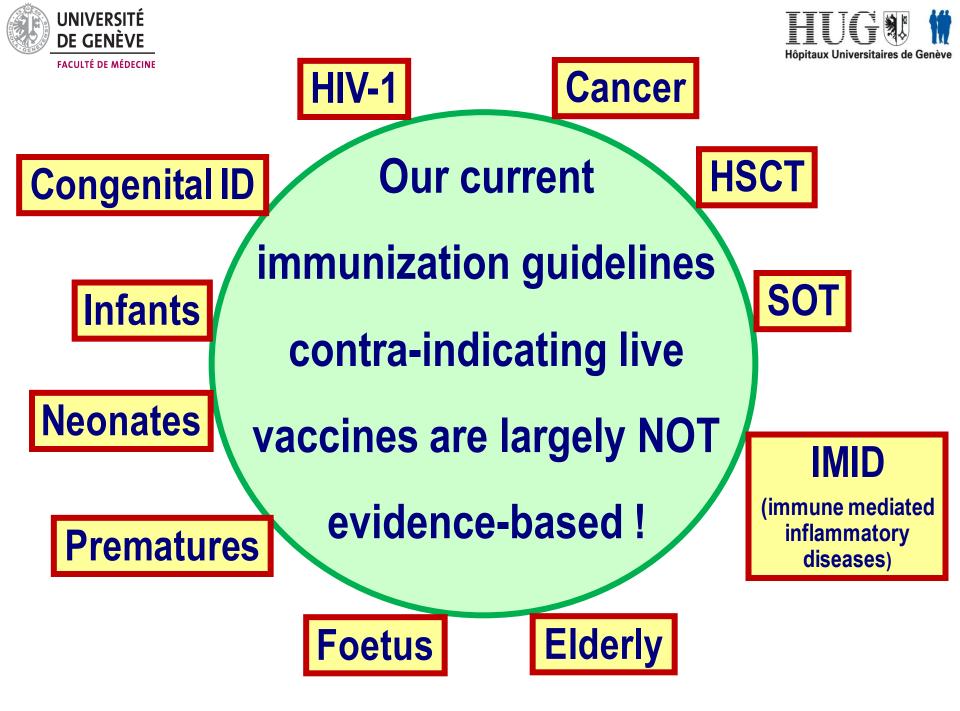
Borte S, Rheumatology 2009

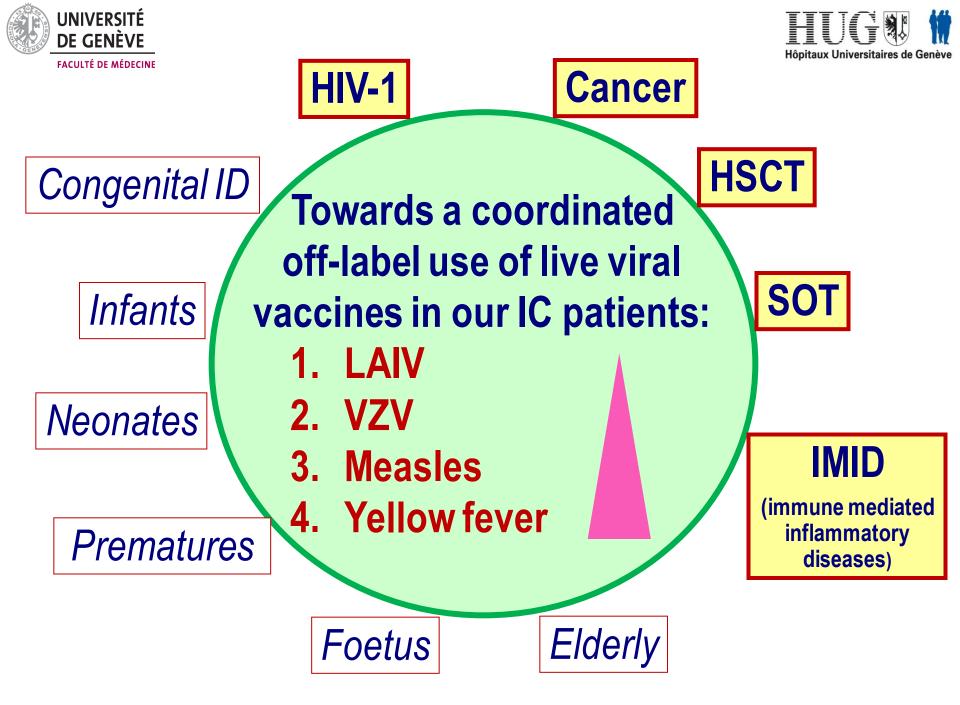
Pileggi GS, Arthritis Care Res 2010

Live vaccines in immunosuppressed IMID patients

Yellow fever immunization to IMID patients ???

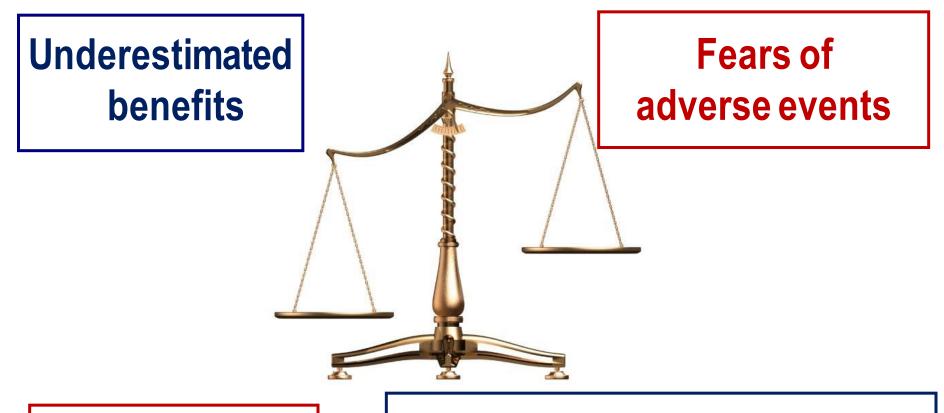
- Brazil, retrospective identification of 70 IMID patients
 inadvertently immunized against YF:
 - mean age 46 years, 90% females
 - rheumatoid arthritis (54), systemic lupus erythematosus (11), spondyloarthropathy (5), systemic sclerosis (2)
 - methotrexate (42), corticosteroids (22), sulfasalazine (26), leflunomide (18), cyclophosphamide (3), immunobiological agents (9).
 - 16 (22.5%) with minor adverse effect.
- No safety issue identified...



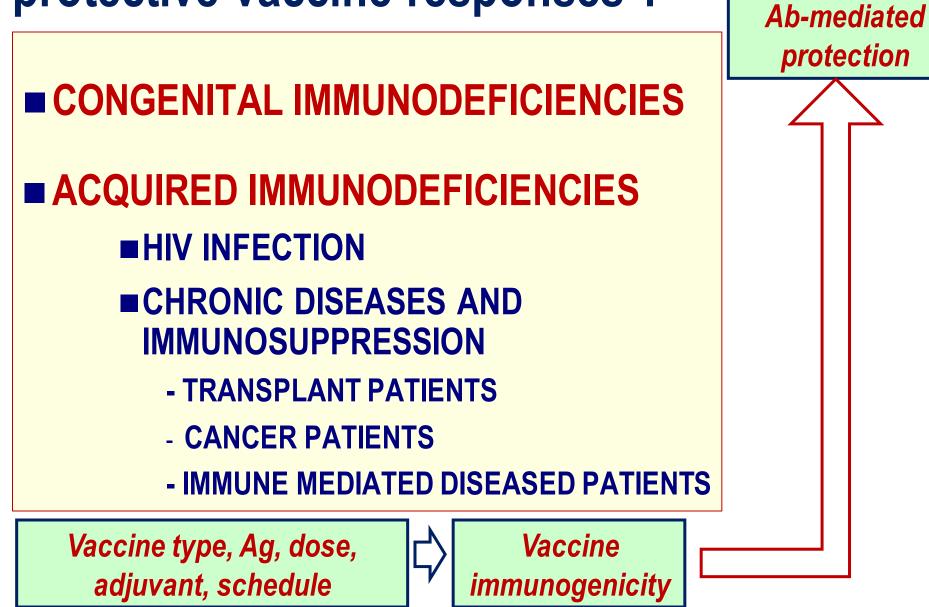

Adjuvanted influenza vaccines in immunosuppressed IMID patients

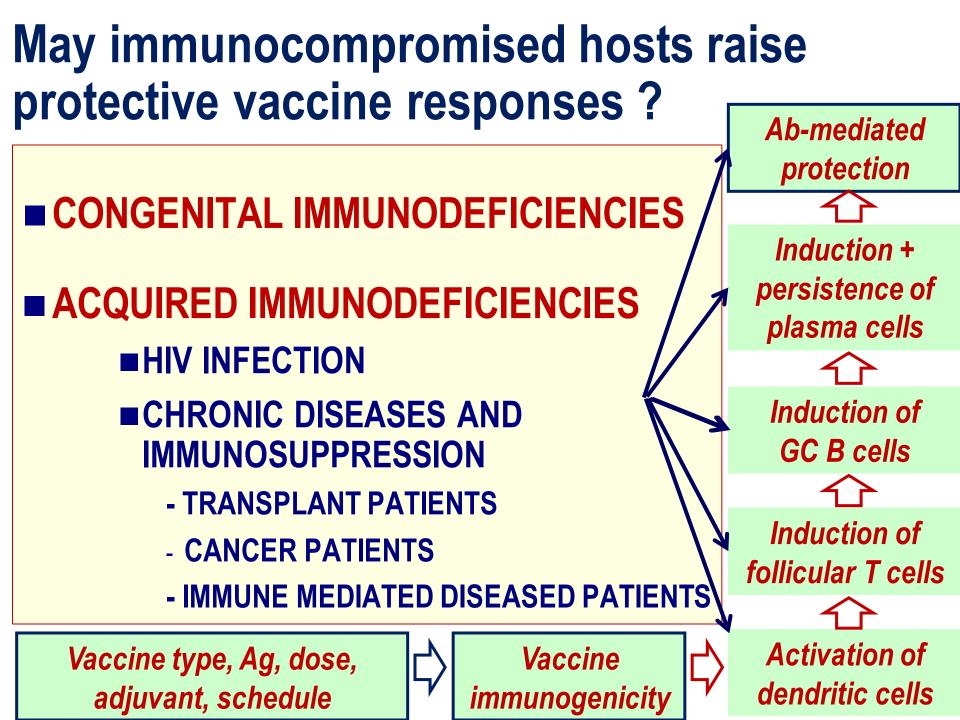
Few studies, but similar results : no safety issue !

- Gabay C, et al. Arthritis Rheum. 2011 Jun;63(6):1486-96.
 - n= 173 patients (mixed population), Geneva / Switzerland
 - 2 doses of AS03-adjuvanted H1N1v vaccines (Pandemrix®, GSK)
 - Unchanged disease activity scores + immune monitoring
- Urowitz MB, Arthritis Care Res. Nov 2011;63(11):1517-20.
 - n = 103 SLE patients, Toronto /Canada
 - 1 dose of AS03-adjuvanted (n=52) or non-adjuvanted H1N1v vaccine (n=51)
 - Unchanged prevalence / titers of nine selected auto-antibodies
- <u>Elkayam O, Arthritis Care Res. Jul 2011;63(7):1062-7</u>
 - n= 94 patients (mixed population), Tel Aviv /Israel
 - 1 dose of MF59-adjuvanted H1N1v vaccine (Novartis Vaccine)
 - Unchanged disease activity scores



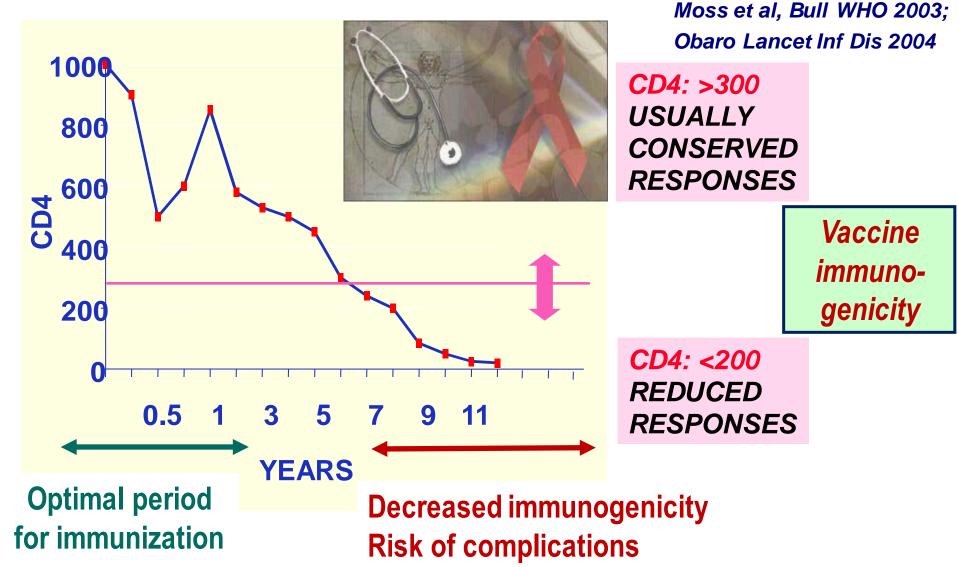
Vaccinations FACULTÉ DE MÉDECINE in the immunocompromised


If vaccines are safe...

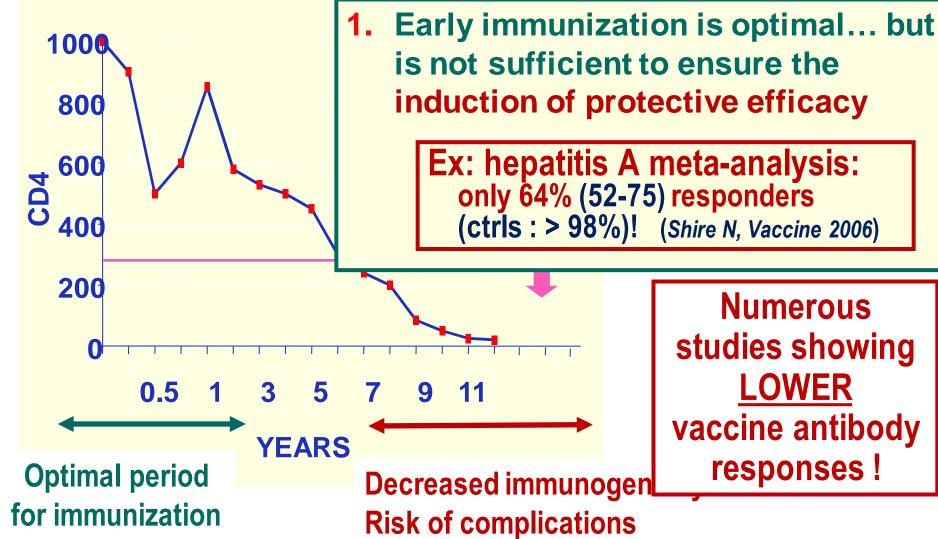

INIVERSITÉ

DE GENÈVE

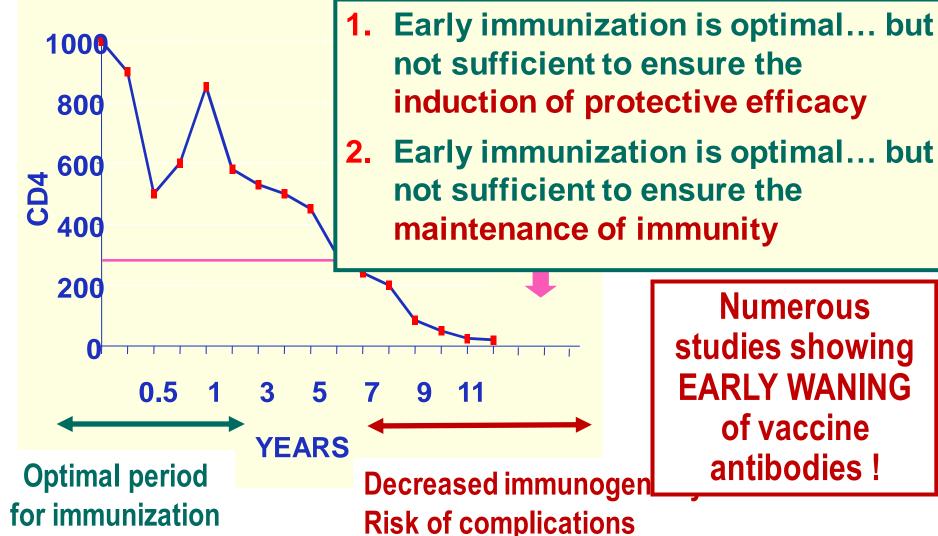
Even partial efficacy is higher than the lack of efficacy which results from the lack of immunization...


May immunocompromised hosts raise protective vaccine responses ?

HIV infection and vaccine responses

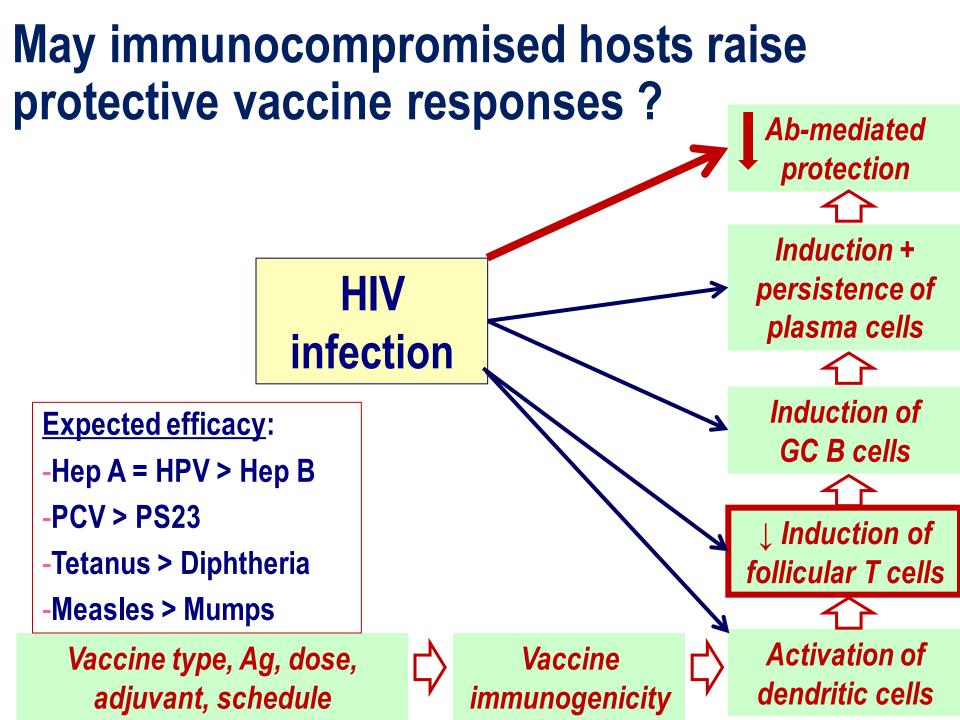


HIV infection and vaccine responses


Moss et al, Bull WHO 2003;

HIV infection and vaccine responses

Moss et al, Bull WHO 2003;



Influence of highly active anti-retroviral therapy on vaccine responses

- HAART is efficient at prolonging or restoring immune competence...
- 1. but is not sufficient to ensure the induction of immunity
- 2. ... but is not sufficient to ensure the maintenance of immunity
- 3. ...but is not sufficient to restore the diversity of the preexisting repertoire (clonal restriction of immune expansion).

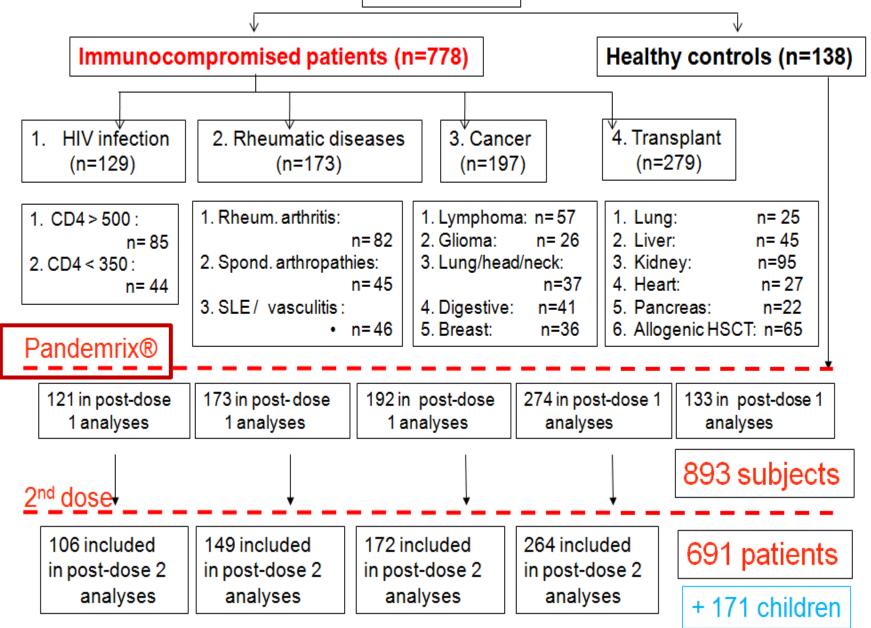
Too few studies yet with potent multivariate analyses !

Influence of new drugs on vaccine responses ???

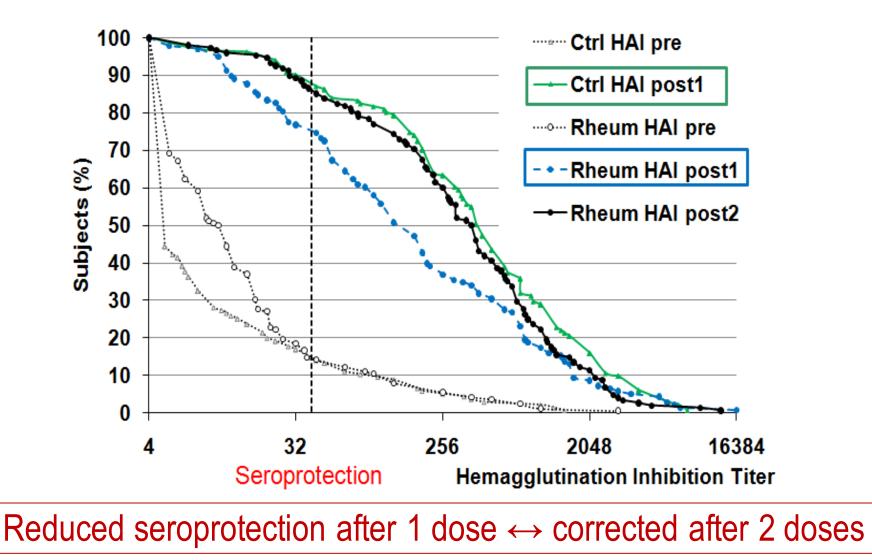
Patients with autoimmune disease are often maintained for years on various drugs:

- Corticosteroids (unless ≤ 20mg/d for ≤ 2 wks or topical)
- Adalimumab
- Azathioprine
- Ciclosporine
- Etanercept
- Fingolimod
- Infliximab
- Leflunomide
- Mesalazin
- Methotrexate
- Mycophenenolyte
- Natalizumab
- Rituximab
- Sirolimus / tacrolimus
- Sulfazalazin

Distinct mechanisms


- Distinct impacts
- Dose effects

Combinations


Few studies – often with contradictory results : small groups, patient heterogeneity, treatment heterogeneity, variability, etc.

H1N1/09 pandemic

916 adults

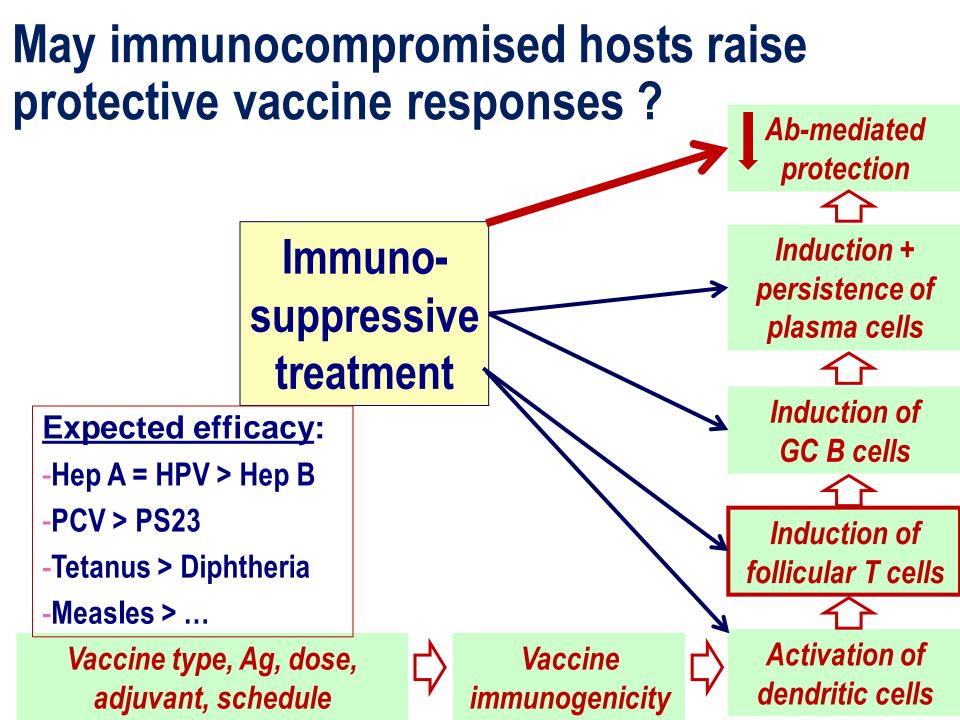
Influence of IS on H1N1/09 adjuvanted vaccine responses in patients with rheumatic diseases

Gabay C, et al. Arthritis Rheum. 2011

Influence of IS on H1N1/09 adjuvanted vaccine responses in patients with rheumatic diseases

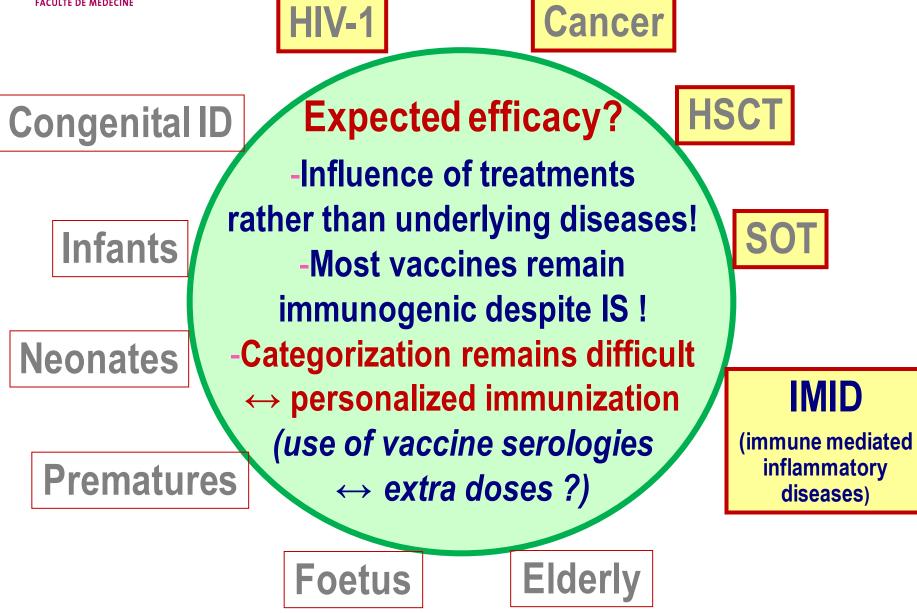
		Controls (POST 1) & Patients (POST 2)						
		POST1			POST2			
		Estimates (SE)	Effect	p-value	Estimates (SE)	Effect	p-value	
Underlying disease	Controls							
	Patients w/o DMARDs Patients with DMARDs				-0.04 (0.15)	-9%	0.78	
					-0.39 (0.10)	-59%	<0.001	
Disease groups	RA							
	SA	-0.05 (0.18)	-11%	0.76	-0.13 (0.16)	-26%	0.44	
	Other	-0.18 (0.28)	-34%	0.53	-0.04 (0.20)	-9%	0.83	
TNF-α antagonists	No							
	Yes	0.06 (0.16)	15%	0.72	-0.02 (0.15)	-5%	0.91	
B cell depletion	No							
	Yes	-0.32 (0.23)	-52%	0.16	-0.50 (0.19)	-68%	0.01	
Oral steroids	No							
	Yes	0.25 (0.15)	78%	0.10	-0.05 (0.13)	-11%	0.72	
MTX	No							
	Yes	-0.46 (0.17)	-65%	0.01	-0.34 (0.15)	-54%	0.03	
SSZ, HCQ	No							
	Yes	0.37 (0.16)	134%	0.03	0.11 (0.14)	29%	0.45	
LEF	No							
	Yes	-0.64 (0.22)	-77%	0.004	-0.33 (0.19)	-53%	0.04	
AZA, CYC, MMF	No							
	Yes	-0.66 (0.29)	-78%	0.03	-0.45 (0.20)	-65%	0.03	

Gabay C et al Arthritis Rheum. 2011

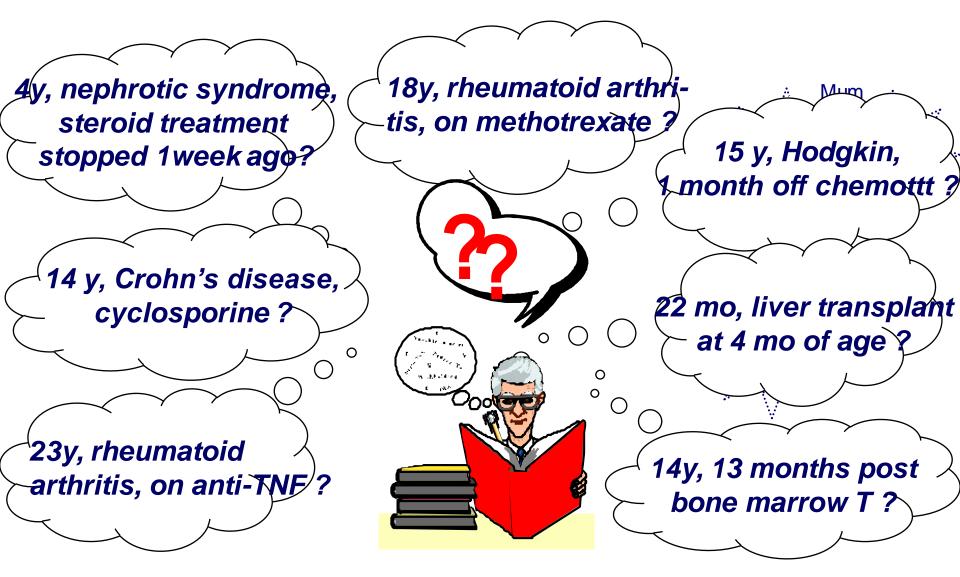

Marked inhibition by some – and not by other – IS treatments !

Influence of IS on H1N1/09 adjuvanted vaccine responses in solid organ transplant recipients

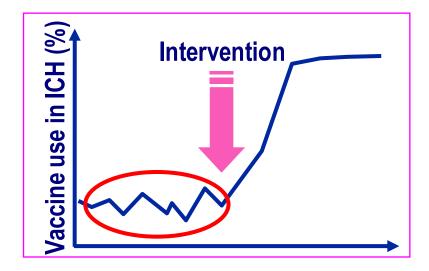
		Controls (POST1) - Patients (POST2)					
		Estimates (SE)	Effect	p-value			
	Controls	0					
SOT transplant	Pancreas	-0.16 (0.18)	-31%	0.36			
SOT transplant	Lung	-0.83 (0.16)	-85%	< 0.001			
	Liver	-0.14 (0.13)	-28%	0.29			
	Kidney	-0.38 (0.10)	-58%	< 0.001			
	Heart	-0.17 (0.16)	-32%	0.30			
Oral steroids	No	0					
	Yes	-0.04 (0.13)	-9%	0.75			
MMF and/or ECMPA	No	0		0.0006			
	< 2mg/mL	-0.18 (0.13)	-35%	0.17			
	2-4 mg/mL	-0.42 (0.15)	-62%	0.004			
	>4 mg/mL	-0.73 (0.19)	-82%	0.0001			
Tacrolimus	No	0					
	Yes	0.09 (0.17)	23%	0.59			
Cyclosporine	No	0					
	Yes	-0.05 (0.19)	-12%	0.77			


Siegrist, et al. Antiviral Therapy, 2012

Marked inhibition by some – and not other – IS treatments !

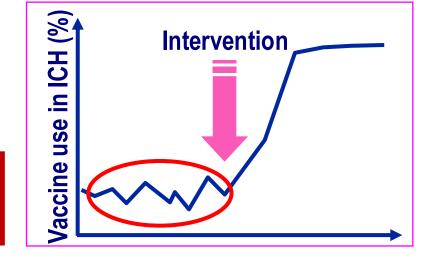


Friday afternoon with the vaccinologist's beeper in the middle of a measles outbreak !


Vaccinations in immunocompromised patients: 3 main challenges

- 1. Maximize the expected benefits of vaccination for each individual immunocompromised patient
- Immunize as early as possible after diagnosis
- Assess vaccine seroresponses to evaluate immune competence / correlates of protection
- Give additional primary doses as needed...
- Control the persistence of vaccine-induced immunity
- Give additional boosters as needed !

Individual patient - based strategies!


Vaccinations in immunocompromised patients: 3 main challenges

- 1. Maximize the expected benefits of vaccination for each individual immunocompromised patient
- 2. Implement the interventions required to increase the proportion of patients who benefit from vaccine-induced immunity !

Vaccinations in immunocompromised patients: 3 main challenges

- 1. Maximize the expected benefits of vaccination for each individual immunocompromised patient
- 2. Implement the interventions required to increase the proportion of patients who benefit from vaccine-induced immunity !
- 3. Contribute to update our missing or largely empirical policies !!

Studies wanted !

Improving the use of vaccinations in our immunocompromised patients From empiric towards evidence-based guidelines : Splenectomised patients

- Which vaccines (conjugate / PS) ? When ?
- Whether / when / how to use boosters ?

Cancer patients

• Delay after chemotherapy ? Live vaccines?

Transplant patients (HSC, organ)

Delay after transplant ? Live vaccines ?

HIV patients with lower CD4 T cells

• Yellow fever vaccine ?

IMID patients

All questions open !

Evidence - based strategies needed !

If you have the vaccinologist's beeper...

- Do not assume to be called in : reach out for the patients !
- Do not assume that immunization have been previously given : check vaccine status !
- Do not assume that immunization have been effective : check for vaccine-induced immunity !

If you have the vaccinologist's beeper...

Recommend what would be needed...
 ...but do not assume your advice will be followed !

 Keep on boosting : this is how vaccinologists are most effective !

