


#### > 2 million annual infant deaths from infections between 1 and 6 months of age





#### **Diarrhoeal diseases**

- Viral (rotavirus)
- Bacterial (salmonella, shigella)

Acute respiratory infections - Viral (RSV, influenza) - Bacterial (*B. pertussis*, *Hib S. pneumoniae*)

Vaccine-preventable causes of deaths worldwide - J. Clemens et al, Nature Immunol 2010



Neonates (28 d): • fulminant severe infections (most pathogens)

• higher rates of chronicity (HBV, CMV, etc.)







Neonates (28 d): • fulminant severe infections (most pathogens)

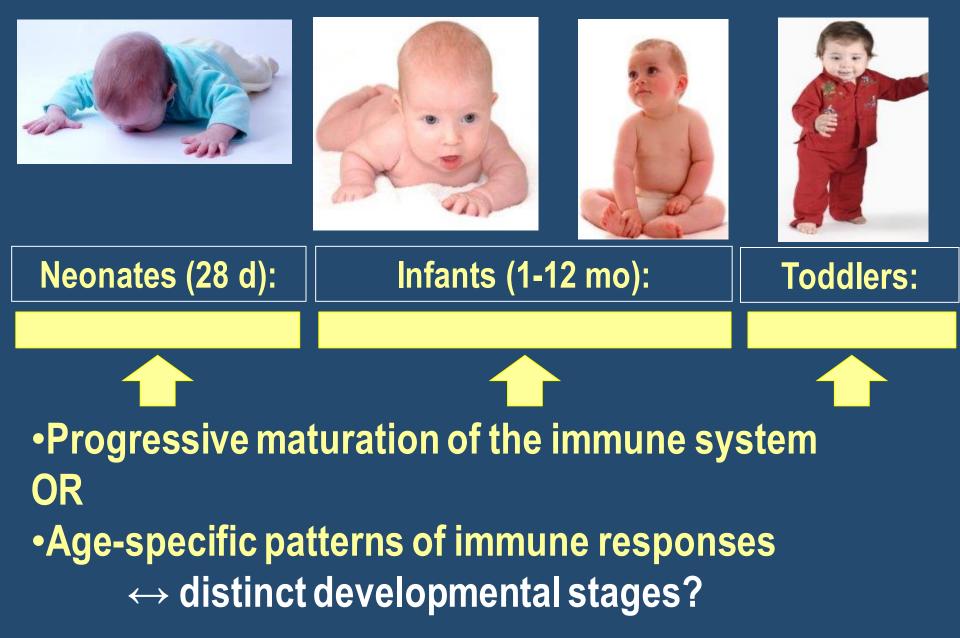
• higher rates of chronicity (HBV, CMV, etc.) Infants (1-12 mo): • more severe / protracted viral infections (influenza, RSV, rotavirus, etc.)

• increased vulnerability to specific bacteria (*pertussis*, encapsulated bacteria...)










Neonates (28 d): • fulminant severe infections (most pathogens)

• higher rates of chronicity (HBV, CMV, etc.) Infants (1-12 mo): • more severe / protracted viral infections (influenza, RSV, rotavirus, etc.)

• increased vulnerability to specific bacteria (pertussis, encapsulated bacteria...) Toddlers: • adult-like resistance to viruses

 progressive resistance to encaps. bact.





#### Decades of studies ↔ numerous differences in B cell, T cell and DC surface markers and *in vitro* response capacity !

#### Table 1

Summary of reported functional characteristics of cells of neonatal immune systems,

| Cell type       | Species | Tissue               | Age   | Characteristic                                                                                                                                                                                     | Reference |
|-----------------|---------|----------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Dendritic cells | Human   | Umbilical cord blood | Birth | Neonatal DC are <u>ineffective</u> in mediating T cell<br>responses to allogeneic or mitogenic stimuli                                                                                             | [54]      |
| Dendritic cells | Human   | Umbilical cord blood | Birth | Decreased IFNα response to CpG by<br>plasmacytoid DC                                                                                                                                               | [55]      |
| T cells         | Human   | Umbilical cord blood | Birth | Neonatal T cells activated by anti-CD3<br>antibodies were less effective than adult T cells<br>in inducing Ig secretion by B cells                                                                 | [63]      |
| T cells         | Human   | Umbilical cord blood | Birth | Neonatal T cells are activated by anti-CD3<br>antibodies, but unlike adult T cells, are not<br>activated by phorbol myrisate or ionomycin, to<br>express CD40-L                                    | [64]      |
| T cells         | Human   | Umbilical cord blood | Birth | Lower proportion of mononuclear cells are<br>CD3 +ve and density of CD3 on T cells is lower                                                                                                        | [65]      |
| B cells         | Human   | Umbilical cord blood | Birth | Neonatal B cells secrete l <u>g less effectively</u> than<br>adult B cells when stimulated by adult T cell<br>factors                                                                              | [63]      |
| B cells         | Human   | Umbilical cord blood | Birth | 76% of B cells are CD21 +ve                                                                                                                                                                        | [68]      |
| B cells         | Human   | Umbilical cord blood | Birth | Higher intensity of expression of IgM on<br>neonatal B cells than adult<br><u>Lower intensity of</u> expression of CD32 on<br>neonatal B cells than adult                                          | [69]      |
| B cells         | Human   | Umbilical cord blood | Birth | Lower expression of CD62L (L-selectin) and<br>CCR7 (chemokine receptor 7) by B cells than<br>for adults<br>neonatal cord and adult peripheral B cells<br>respond to BCR cross-linking and CpG with | [70]      |

proliferation and upregulation of MHC class II.

& CD86

#### Adapted from Hodgins DC, Vaccine 2012



### Neonatal monocytes respond differently to TLR ligands than adult cells

Table 1 | Polarization of TLR-mediated cytokine responses of neonatal cord-blood-derived monocytes and antigen-presenting cells

| Cytokine | Relative<br>expression<br>In newborns | Effect of cAMP<br>on cytokine<br>production | General function                                                                         | Comment                                                         | References |
|----------|---------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------|
| TNF      | Ļ                                     | Ļ                                           | Pro-inflammatory; activates neutrophils;<br>T <sub>H</sub> 1-cell response               | TNF associated with spontaneous<br>abortion and pre-term labour | 71         |
| IFNα     | Ļ                                     | Ļ                                           | Antiviral; contributes to vaccine responses                                              | Important for MHC class I expression                            | 108,163    |
| IFNγ     | Ļ                                     | Ļ                                           | Activation of macrophages; induction of IL-12; T <sub>H</sub> 1-cell response            | Newborns have impaired killing of<br>intracellular pathogens    | 11         |
| IL-12    | Ļ                                     | Ļ                                           | p40–p35 heterodimer activates cell-<br>mediated immunity; T <sub>H</sub> 1-cell response | Neonatal defect in p35 promoter<br>nucleosome remodelling       | 126        |
| IL-1β    | Ļ                                     | Ļ                                           | Endothelial adhesion; fever; acute-phase response                                        | Newborn febrile response is blunted                             | 164        |



### Neonatal monocytes respond differently to TLR ligands than adult cells

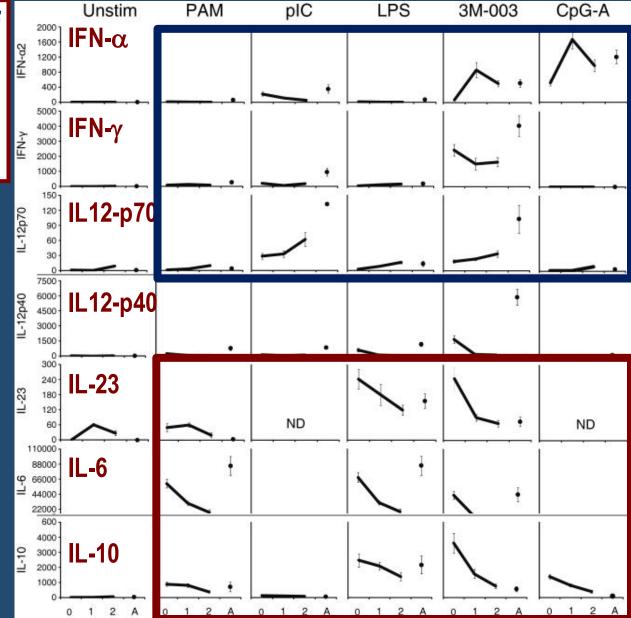
| Table 1   Pol | arization of TLF                      | R-mediated cytoki                           | ne responses of neonatal cord-blood-d                                                                                          | erived monocytes and antigen-pres                                 | senting cells |
|---------------|---------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------|
| Cytokine      | Relative<br>expression<br>In newborns | Effect of cAMP<br>on cytokine<br>production | General function                                                                                                               | Comment                                                           | References    |
| TNF           | Ļ                                     | Ļ                                           | Pro-inflammatory; activates neutrophils;<br>T <sub>H</sub> 1-cell response                                                     | TNF associated with spontaneous<br>abortion and pre-term labour   | 71            |
| IFNα          | Ļ                                     | Ļ                                           | Antiviral; contributes to vaccine responses                                                                                    | Important for MHC class I expression                              | 108,163       |
| IFNγ          | Ļ                                     | Ļ                                           | Activation of macrophages; induction of IL-12; $T_{H}$ 1-cell response                                                         | Newborns have impaired killing of<br>intracellular pathogens      | 11            |
| IL-12         | Ļ                                     | Ļ                                           | p40–p35 heterodimer activates cell-<br>mediated immunity; T <sub>H</sub> 1-cell response                                       | Neonatal defect in p35 promoter<br>nucleosome remodelling         | 126           |
| IL-1β         | Ļ                                     | Ļ                                           | Endothelial adhesion; fever; acute-phase response                                                                              | Newborn febrile response is blunted                               | 164           |
| IL-6          | î                                     | î                                           | Acute-phase response; inhibits tissue<br>neutrophilia; inhibits T <sub>Reg</sub> cells and<br>promotes T <sub>H</sub> 17 cells | May contribute to acute-phase response at birth                   | 12,165        |
| IL-8          | Ŷ                                     | $\leftrightarrow$                           | Neutrophil chemoattractant                                                                                                     | Expression increased during<br>hypoxia; role in parturition       | 166           |
| IL-10         | Ŷ                                     | ſ                                           | Anti-inflammatory; inhibits TNF, IL-1<br>and IFNγ production                                                                   | Blocking IL-10 can restore IL-1<br>production                     | 14,167        |
| L-23          | Ŷ                                     | ↑                                           | p40–p19 heterodimer promotes<br>T <sub>H</sub> 17 cells                                                                        | IL-17 enhances epithelial expression<br>of antimicrobial peptides | 13,125        |

 $\uparrow$ , increased;  $\downarrow$ , decreased;  $\leftrightarrow$ , unchanged; cAMP, cyclic AMP; IFN, interferon; IL, interleukin; T<sub>µ</sub>, T helper; TLR, Toll-like receptor; TNF, tumour-necrosis factor; T<sub>Pur</sub>, T regulatory.

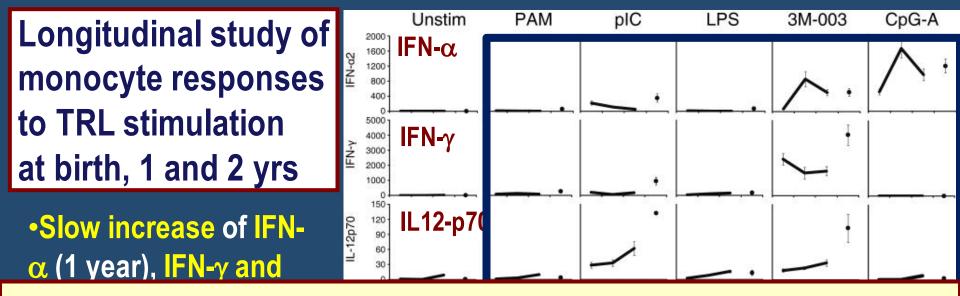
#### Levy O, Nature Rev Immunol 2007

#### Neither deficient nor immature... but different !

## Comparing neonatal and infant responses

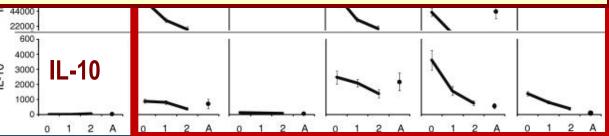

Longitudinal study of monocyte responses to TRL stimulation at birth, 1 and 2 yrs

-3


•Slow increase of IFN- $\alpha$  (1 year), IFN- $\gamma$  and IL12p70 (2 years)

• Slow decline of IL17supporting cytokines (IL-23, IL-6) and IL-10 (1 year)

 Stimulus-dependent TNF-α responses from
 1 month of age Corbett NP, Plos One 2010




## Comparing neonatal and infant responses



Not a smooth progression from an « immature » neonatal pattern to a « mature » adult pattern... ... but qualitative <u>and</u> quantitative age-specific differences in innate immune reactivity !

 Stimulus-dependent
 TNF-α responses from
 1 month of age Corbett NP, Plos One 2010



### Limitations of early life T cell responses: from neonatal tolerance to early life regulation...



## In early life, most antigenic stimulations induce

- limited IFN-γ responses
- lower CD8<sup>+</sup> responses

« Neonatal immune tolerance »

1950 - 1990

### Limitations of early life T cell responses: from neonatal tolerance to early life regulation...



## In early life, most antigenic stimulations induce

- limited IFN-γ responses
- excess Th2 responses
- lower CD8<sup>+</sup> responses

Preferential Th2 polarization !

2000 - 2005

### Limitations of early life T cell responses: from neonatal tolerance to early life regulation...



In early life, most antigenic stimulations induce

- specific patterns of innate responses
- limited IFN-γ responses
- excess Th2 responses
- lower CD8<sup>+</sup> responses

Tightly regulated process ! 2005 – to date

# Limitations of early life T cell responses: from neonatal tolerance to early life regulation...



In early life, most antigenic stimulations induce

- specific patterns of innate responses
- limited IFN-γ responses
- excess Th2 responses
- lower CD8<sup>+</sup> responses

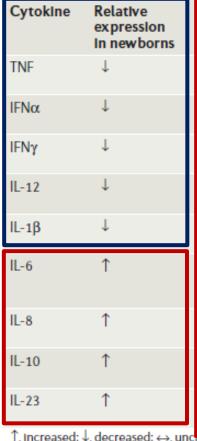


- In early life, most antigenic stimulations induce
- specific patterns of innate responses
- limited IFN-γ responses
- excess Th2 responses
- lower CD8<sup>+</sup> responses

Similar early life immune regulation patterns in human and mice (distinct kinetics!)

## Why would neonatal responses be similarly regulated in several species ?



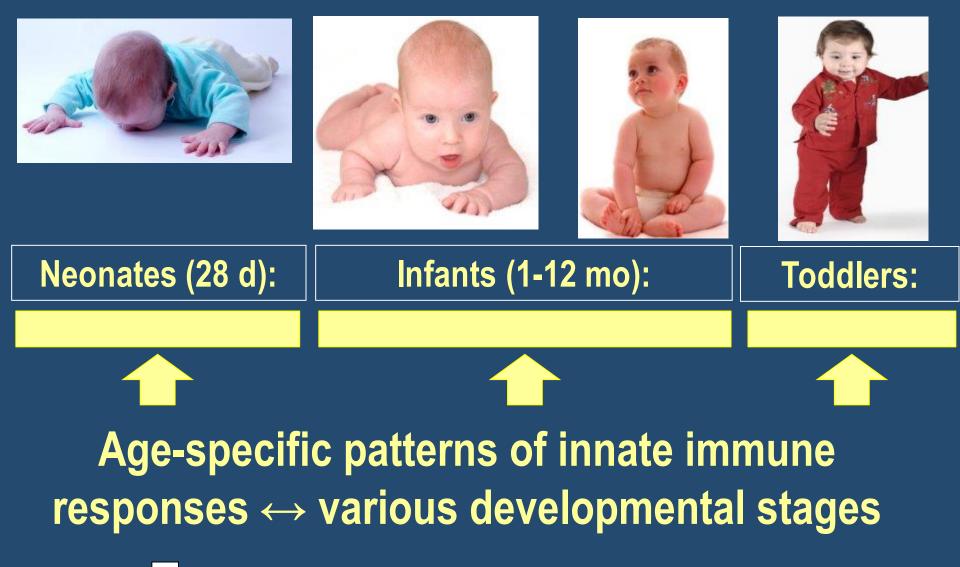







# Why would neonatal responses be similarly regulated in several species ?

Table 1 | Polarization of TLR-mediated cytokine responses of neonatal cord-blood-derived monocytes and antigen-presenting cells

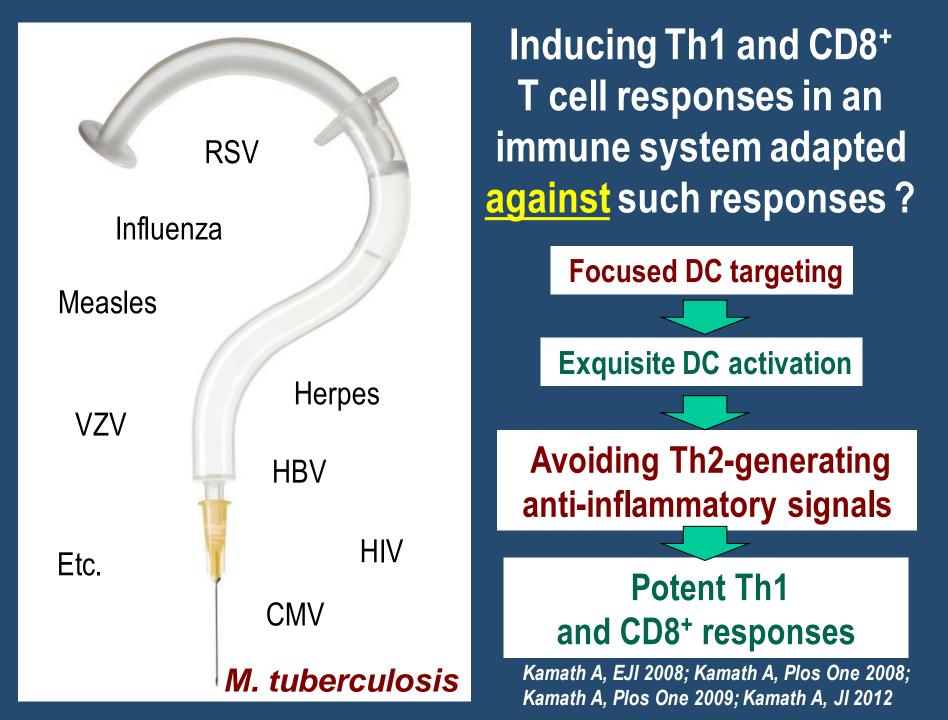



To avoid potent inflammatory responses:

- limits the risks of alloimmune reactions between mother and fetus
- limits the risks of premature labor (TNF, IL1 $\beta$ )
- limits inflammatory responses at sites of intense neonatal colonization (skin, gut...)
- favors tolerance induction to common or self Ag
   ↔ reduction of the risk of autoimmunity
- avoids potentially harmful immune-mediated responses to common viral pathogens








**Regulation of adaptative responses?** 



Inducing Th1 and CD8<sup>+</sup> T cell responses in an immune system adapted against such responses ?

## Avoiding Th2-generating anti-inflammatory signals



## Th1/CD8<sup>+</sup> neonatal T cell responses may be safely elicited under specific conditions



In early life, most antigenic stimulations induce

- specific patterns of innate responses
- limited IFN-γ responses
- excess Th2 responses

#### Vaccine-type dependent !

Live vectors, targeted adjuvants, etc.

# Th1/CD8<sup>+</sup> neonatal T cell responses may be safely elicited under specific conditions



In early life, most antigenic stimulations induce

- specific patterns of innate responses
- limited IFN-γ responses
- excess Th2 responses

Vaccine-type dependent !

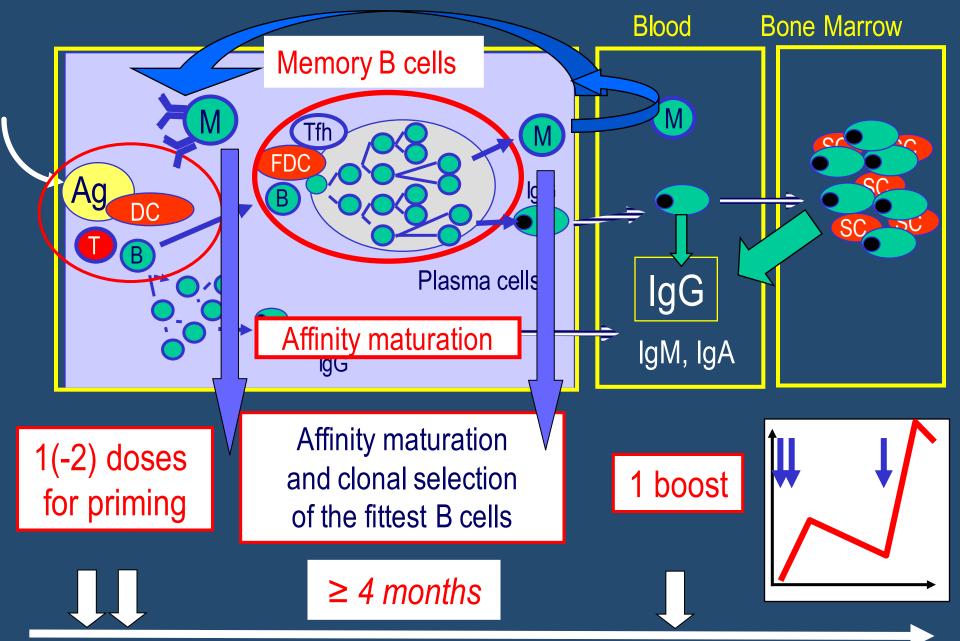
BCG, live vectors, LAIV ( $\geq 6 \text{ mo}$ ), ...



- In early life, most antigenic stimulations induce
- specific patterns of innate responses
- limited IFN-γ responses
- excess Th2 responses

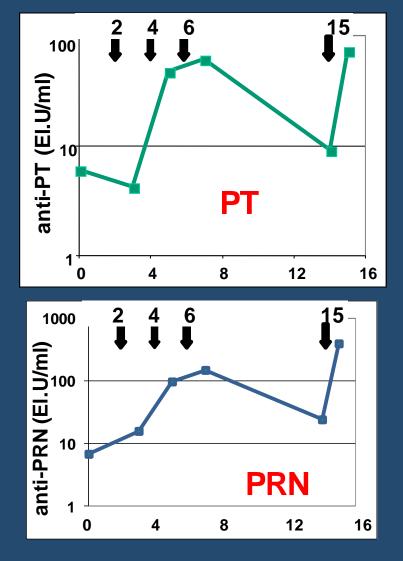
#### Vaccine-type dependent !

Live vectors, targeted adjuvants, etc.

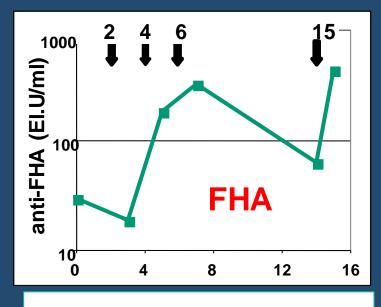

#### S. Pneumoniae N. Meningitidis H. influenzae

B. pertussis

Influenza RSV Etc !


## Early life B cell responses

#### 0-1-6: the "classical" immunization schedule!



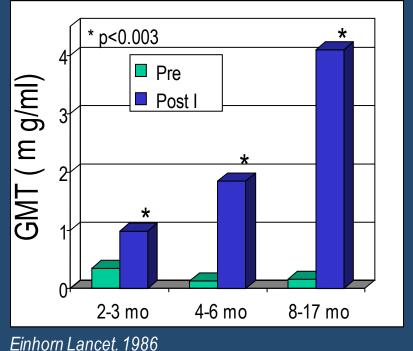



# Early life antibody vaccine responses: acellular pertussis as an example



Knuf et al J Ped 2008; J Ped 2010




#### DTaP at 2-4-6 months

- 1<sup>st</sup> dose: very low responses !
- 2<sup>nd</sup> dose: marked increase
- 3<sup>rd</sup> dose: small increase
- Rapid Ab waning (< 12 mo)!!
- Effective boosting



## Vaccine antibody responses slowly increase with age

#### PRP-OMC, anti-Hib

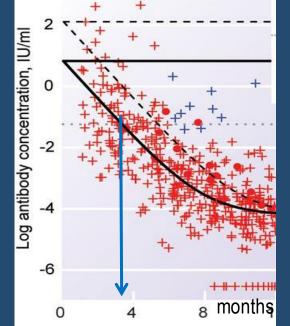


<u>Glycoconjugate vaccines</u> : < 6 months : 3-4 doses ≥ 12 months : 1 dose

#### DTP, PRP-TT or PRP-CRM<sub>197</sub>

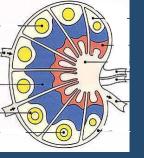


- 6 10 14 weeks
- 2 3 4 months
- 2 4 6 months
- 3 5 12 months

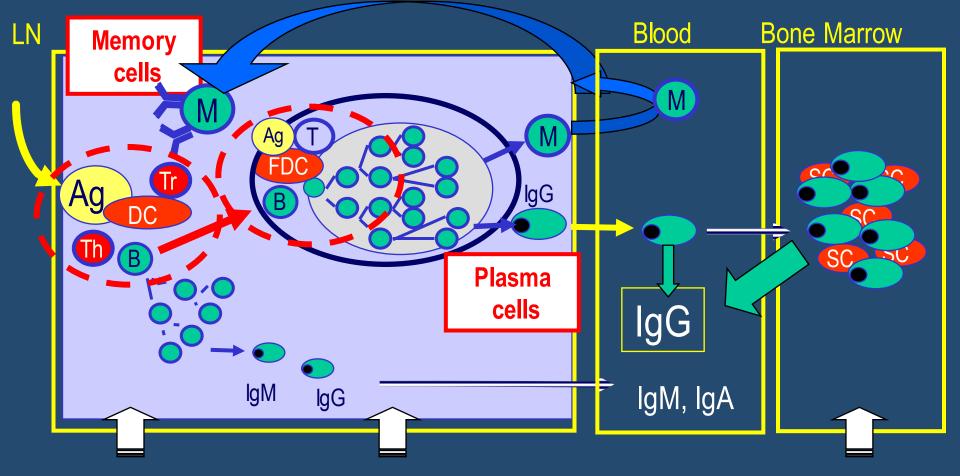


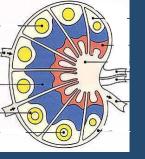

## Vaccine antibody responses slowly increase with age

#### Measles responses in seronegative infants GMT 1000 801 601 400 20( Gans HA 6 9 12 mo JAMA 1998


<u>% with neutralizing Ab titers</u>: Immunization ≥9 months : 100% Immunization 6 months : 36%

## Rapid decay of MatAb in measles immunized mothers





Waaijenborg S J Infect Dis. 2013

#### Estimated duration of seroprotection: 3.3 months !



# Why are antibody responses limited in early life ?





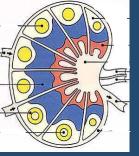
# Why are antibody responses limited in early life ?

**Memory** cells Δa a

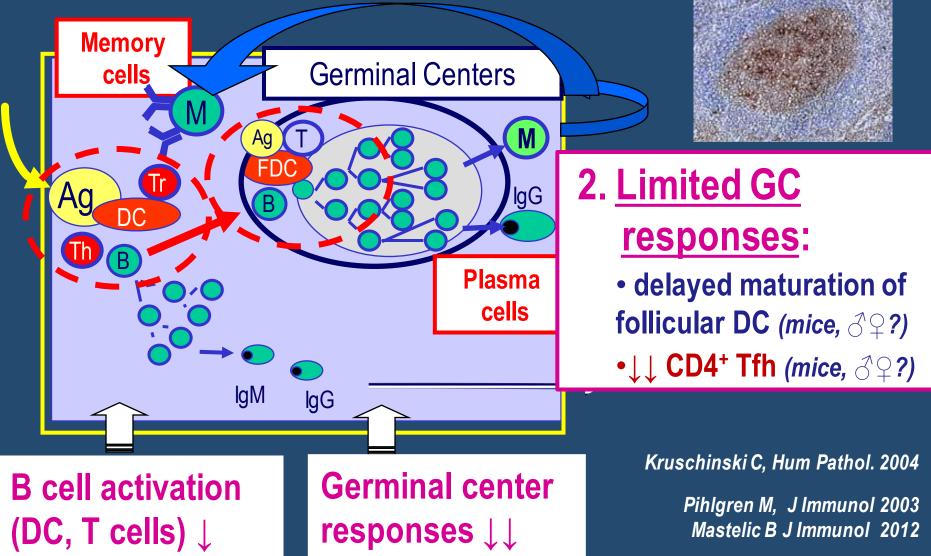
B cell activation (DC, Th cells) ↓

Limited early B cell activation:

 ↓ strength of BCR signalling by naïve neonatal B cells


Blood

Μ

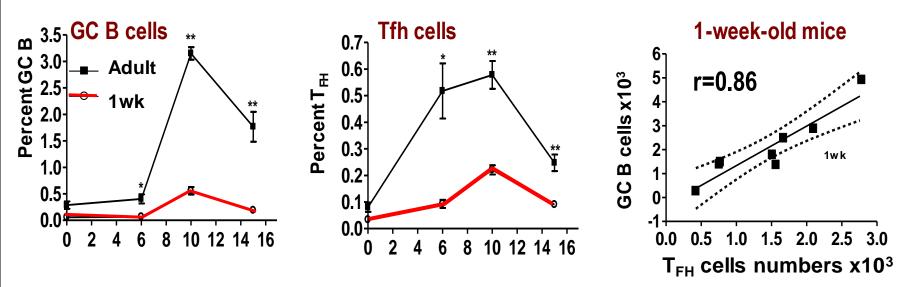

**Bone Marrow** 

- \ B cell expression of costimulatory receptors (CD21, CD40, CD80, CD86...)
- $\downarrow$  costimulatory signals by DC and Th cells (CD40L, C3, BAFF, APRIL...)

Regulated innate responses



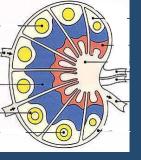
## Why are B cell responses limited in early life ?






# Follicular helper T cells fail to expand following early life immunisation

#### Tetanus toxoid/alum, 1 dose, Balb/c


Mastelic B, JI 2012

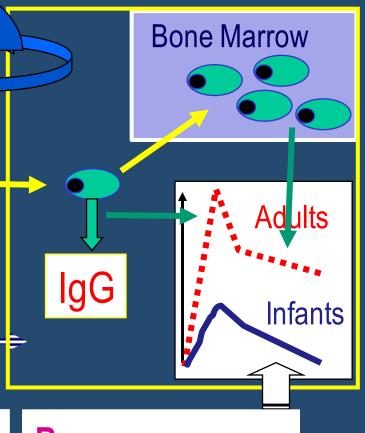


 The limited induction of GC B cells in early life results from the limited expansion of T follicular helper cells with \$\properties\$)

Strong direct correlation between early life Tfh and GC B cells

Adjuvants supporting Tfh expansion in early life ?




## Why are B cell responses limited in early life ?

#### 3. <u>Short persistence of antibodies</u> <u>elicited in early life</u>:

#### • <u>mice</u>: limited PC survival in the BM

- \$\product expression of the APRIL survival factor by BM cells (Belnoue, Blood 2008)
- distinct composition of the PC survival niche ↔ distinct homing/adhesion patterns (Belnoue JI 2012)
- <u>infants</u>: similarly limited PC persistence : similar mechanisms ???

Blood



B cell activation (DC, T cells) ↓

Germinal center responses ↓↓

Bone marrow plasma cells↓↓

#### Early life B cell responses

Infant B cell responses (measles, TT, DT, Pw/Pa, HBsAg, pneumo, HIV, etc...)

Siegrist CA, Vaccine 2001

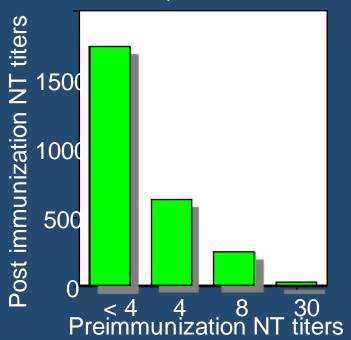
Siegrist CA Nature Rev Immunol 2009



Age-dependent limitations of peak IgG / IgM responses Lower resp. to most PS Shorter Ab persistence Inhibition by MatAb



Age-dependent limitations of peak IgG / IgM responses Lower resp. to most PS Shorter Ab persistence Inhibition by MatAb Influence of maternal antibodies on infant vaccine responses

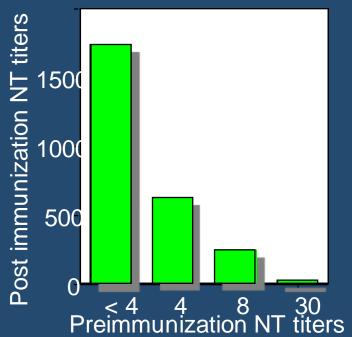



Inhibition by Maternal Ab Albrecht, Pediatrics 1977

Aff
 dept

#### Inhibition of Ab responses:

Mostly affects live vaccines (neutralization before vaccine replication ?)
Affects non live vaccines at titers that depend upon MatAb / Ag ratio ↔ variable
Is epitope-specific ↔ involves FcγR




Siegrist CA, Vaccine 2003, 21:3406-3412

Influence of maternal antibodies on infant vaccine responses

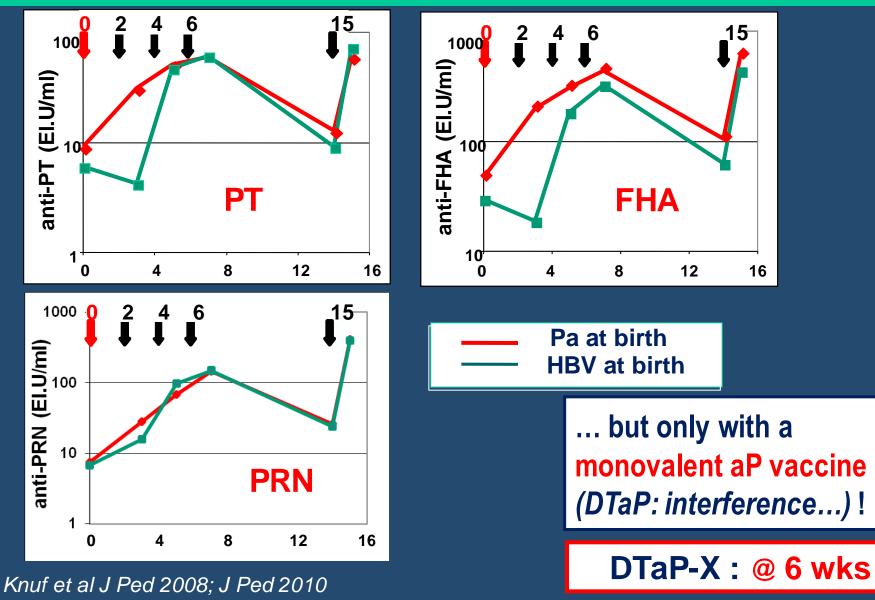


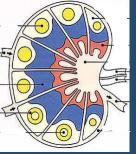

Inhibition by Maternal Ab Albrecht, Pediatrics 1977



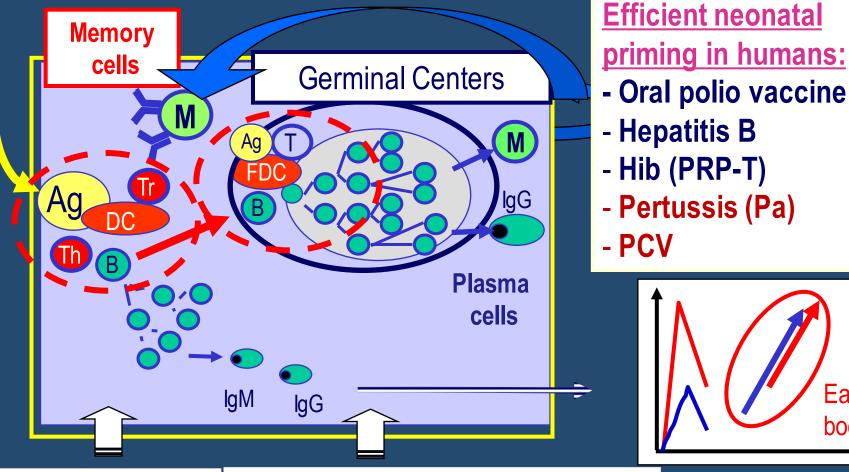
#### Inhibition of Ab responses:

Mostly affects live vaccines (neutralization before vaccine replication ?)
Affects non live vaccines at titers that depend upon MatAb / Ag ratio ↔ variable
Is epitope-specific ↔ involves FcγR





## Normal or $\uparrow$ infant T cell responses !

Siegrist CA, Vaccine 2003, 21:3406-3412




# Infant responses to acellular pertussis may be primed at birth !





#### Early life B cell responses are polarized towards the induction of memory cells !



Germinal center responses  $\downarrow \downarrow \downarrow \downarrow$ **B** cell activation (DC, T cells)  $\downarrow \downarrow \downarrow$ Early memory B cell induction !

M. Knuf, J. Pediatrics 2008 M. Knuf, J. Pediatrics 2009

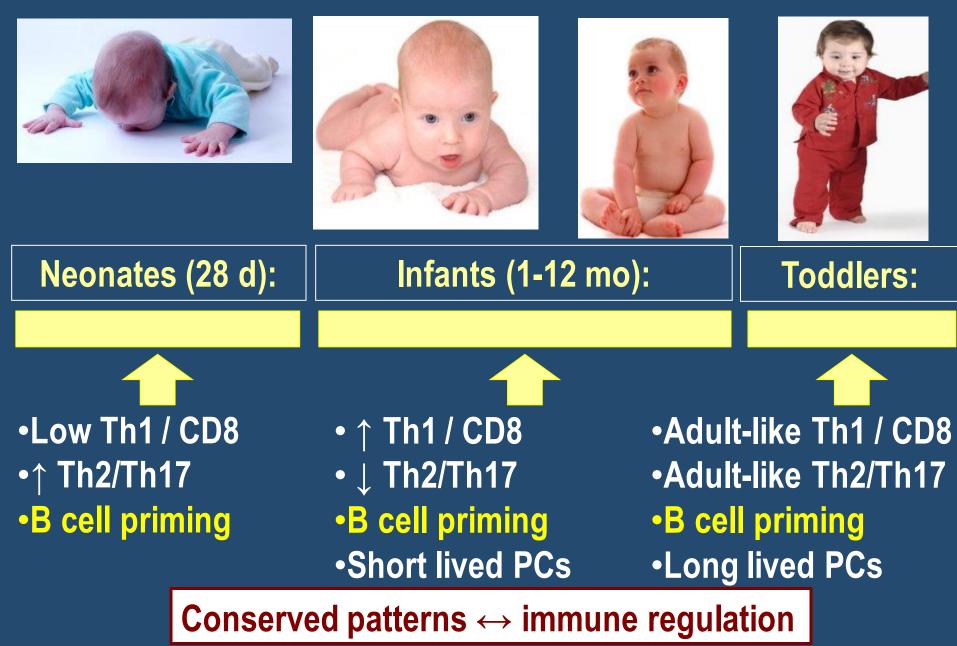
Early

boost

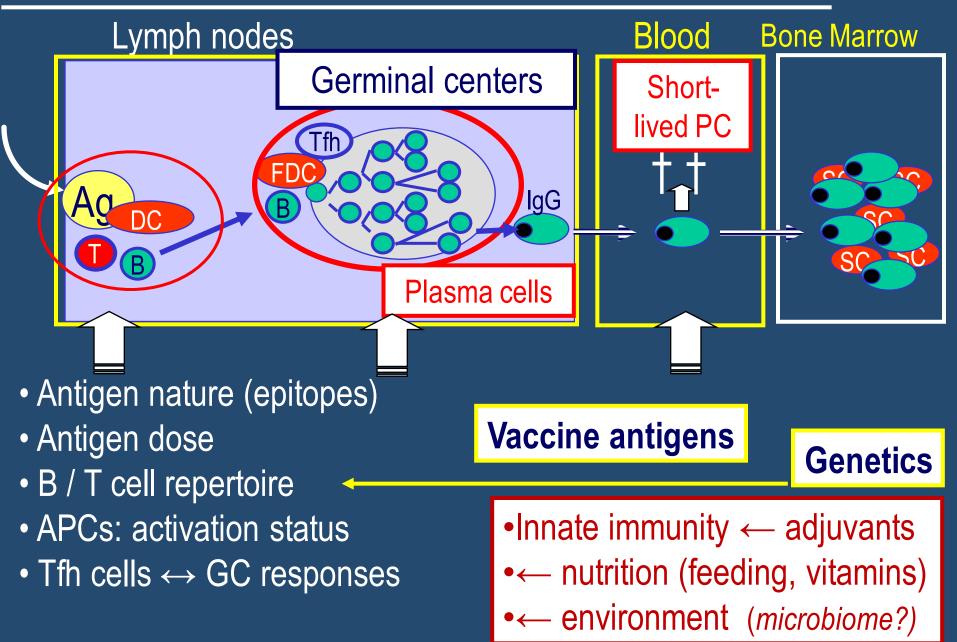
#### Early life B cell responses

Infant B cell responses (measles, TT, DT, Pw/Pa, HBsAg, pneumo, HIV, etc...)

*Siegrist CA, Vaccine 2001* 


Siegrist CA Nature Rev Immunol 2009




Age-dependent<br/>limitations of peak<br/>lgG / IgM responsesAge-dependent<br/>limitations of peak<br/>lgG / IgM responsesLower resp. to most PSLower resp. to most PSShorter Ab persistence<br/>Inhibition by MatAbShorter Ab persistence<br/>lnhibition by MatAbEarly memory inductionEarly memory induction

7day-old

**Conserved patterns ↔ immune regulation** 



#### Determinants of early life B cell responses

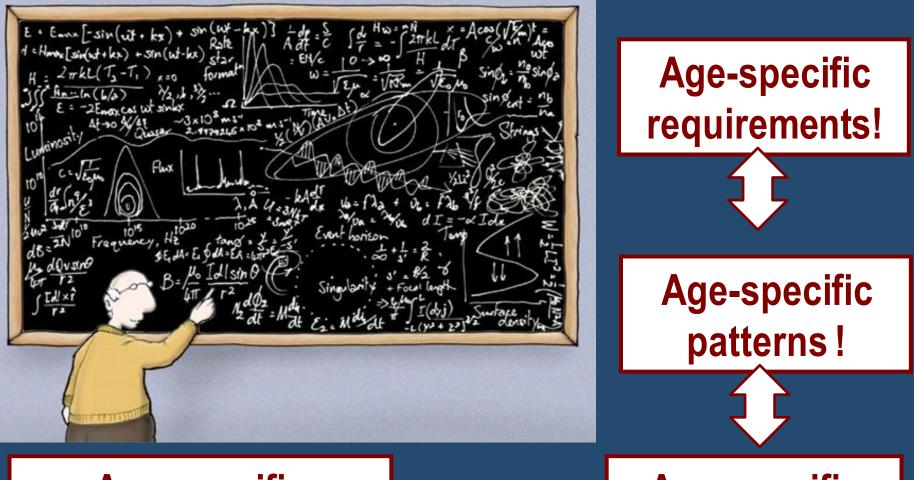


### Vaccine responses may be elicited early – including in very low birth weight preterm infants



< 32 wks or 1500g :
 <ul>
 ↑ risks of brady-apnea in
 hospitalized preterm infants
 monitoring for 48h !

•Lower primary responses < 32 wks gestational age Rapid post-natal immune **maturation** (*← microbiome* ?): •Early priming (birth) Lower PC / Ab responses  $\leftrightarrow$  3 primary doses needed Immunize @ 6-10-14 wks regardless of gestional age! Boosting always required !


## Immune maturation is a fitness-oriented process which progressively builds up defence mechanisms

<image>

Training should be initiated as early as possible in life ... and never interrupted !!!



## Understanding early life human immunity



## Age-specific vaccine strategies !



## Age-specific competences!